Download Free High Explosive Book in PDF and EPUB Free Download. You can read online High Explosive and write the review.

High Explosives and Propellants, Second Edition is a four-part book classified into High Explosives, Blasting Accessories, Application of High Explosives, and Deflagrating and Propellent Explosives. Part I, High Explosives, centers on the general principles, manufacture, design, and assessment of this type of explosive. Part II, Blasting Accessories, describes initiation of explosives and different types of detonators. Part III, Application of High Explosives, deals with the commercial and military applications of high explosives. The last part, Deflagrating and Propellent Explosives, discusses the manufacture, properties, design, and application of propellants.
Improvised explosive devices (IEDs) are a type of unconventional explosive weapon that can be deployed in a variety of ways, and can cause loss of life, injury, and property damage in both military and civilian environments. Terrorists, violent extremists, and criminals often choose IEDs because the ingredients, components, and instructions required to make IEDs are highly accessible. In many cases, precursor chemicals enable this criminal use of IEDs because they are used in the manufacture of homemade explosives (HMEs), which are often used as a component of IEDs. Many precursor chemicals are frequently used in industrial manufacturing and may be available as commercial products for personal use. Guides for making HMEs and instructions for constructing IEDs are widely available and can be easily found on the internet. Other countries restrict access to precursor chemicals in an effort to reduce the opportunity for HMEs to be used in IEDs. Although IED attacks have been less frequent in the United States than in other countries, IEDs remain a persistent domestic threat. Restricting access to precursor chemicals might contribute to reducing the threat of IED attacks and in turn prevent potentially devastating bombings, save lives, and reduce financial impacts. Reducing the Threat of Improvised Explosive Device Attacks by Restricting Access to Explosive Precursor Chemicals prioritizes precursor chemicals that can be used to make HMEs and analyzes the movement of those chemicals through United States commercial supply chains and identifies potential vulnerabilities. This report examines current United States and international regulation of the chemicals, and compares the economic, security, and other tradeoffs among potential control strategies.
This dictionary contains 739 entries with about 1400 references to the primary literature. Details on the composition, performance, sensitivity and other pertinent properties of Energetic Materials such as High Explosives, Propellants, Pyrotechnics, as well as important ingredients such as Oxidizers, Fuels, Binders, and Modifiers are given and presented partly in over 180 tables with more than 240 structural formulas . In detail the dictionary gives elaborate descriptions of 460 Chemical Substances 170 Pyrotechnic Compositions 360 High Explosive and Propellant Formulations In addition, the basic physical and thermochemical properties of 435 pure substances (elements & compounds) typically occuring as ingredients or reaction products are given too. 150 Figures, schemes and diagrams explain Applications, Test methods, Scientific facilities, and finally Individuals closely tied with the development and investigation of Energetic Materials. The book is intended for readers with a technical or scientific background, active in governmental agencies, research institutes, trade and industry, concerned with the procurement, development, manufacture, investigation and use of Energetic Materials, such as High Explosives, Propellants, Pyrotechnics, Fireworks and Ammunition. The book serves both as a daily reference for the experienced as well as an introduction for the newcomer to the field.
This graduate text, and Cooper's companion introductory text ('Introduction to the Technology of Explosives'), serve the same markets as the successful explosives reference by Meyer, now in its 4th edition. VCH also published the International Journal of Propellants, Explosives, and Pyrotechnics. The resulting package would give VCH the major presence in the field. This text presents the basic technologies used in the engineering of explosives and explosive systems, i.e., chemistry, burning, detonation, shock waves, initiation theories, scaling. The book is written for upper-division undergraduate or graduate-level scientists and engineers, and assumes a good grasp of basic physics, chemistry, mechanics and mathematic through calculus. It is based on lecture notes used for graduate courses at the Dept. of Energy Laboratories, and could serve as a core text for a course at schools of mining or military engineering. The intent of the book is to provide the engineer or scientist in the field with an understanding of the phenomena involved and the engineering tools needed to solve/ design/ analyze a broad range of real problems.
Introduction to the Technology of Explosives Paul W. Cooper and Stanley R. Kurowski Introduction to the Technology of Explosives is a clear and concise survey of the technologies and physical processes involved in explosive phenomena. The book is intended to provide the worker new to the field with sufficient background to understand problems that may arise and to interact intelligently with specialists in the field. The book covers the fundamentals of the chemistry of explosives; the mechanics of burning; sound, shock, and detonation; initiation and initiators; scaling in design and analysis; and off-the-shelf explosive devices. It provides the basic calculational skills needed to solve simple, first-order engineering design problems, and emphasizes the crucial importance of safety considerations. The book contains a broad range of data on explosive materials, and their properties and behavior, along with extensive lists of useful references. Example problems with solutions are provided in each technical area, as are descriptions and analysis of a wide variety of explosive devices. The book concludes with a thorough and comprehensive description of regulatory requirements for the classification, transportation, and storage of explosives, and an extensive guide to explosives safety in plant and test facilities. This book will be of interest to explosives technicians and engineers, government regulators, crime and accident scene investigators, and instructors in military, police, and FBI bomb schools.
Authored by an insider with over 40 years of high energy materials (HEMs) experience in academia, industry and defense organizations, this handbook and ready reference covers all important HEMs from the 1950s to the present with their respective properties and intended purposes. Written at an attainable level for professionals, engineers and technicians alike, the book provides a comprehensive view of the current status and suggests further directions for research and development. An introductory chapter on the chemical and thermodynamic basics allows the reader to become acquainted with the fundamental features of explosives, before moving on to the important safety aspects in processing, handling, transportation and storage of high energy materials. With its collation of results and formulation strategies hitherto scattered in the literature, this should be on the shelf of every HEM researcher and developer.
In response to the rising concern of the American public over illegal bombings, the Bureau of Alcohol, Tobacco, and Firearms asked the National Research Council to examine possible mechanisms for reducing this threat. The committee examined four approaches to reducing the bombing threat: addition of detection markers to explosives for pre-blast detection, addition of identification taggants to explosives for post-blast identification of bombers, possible means to render common explosive materials inert, and placing controls on explosives and their precursors. The book makes several recommendations to reduce the number of criminal bombings in this country.
Explosive pulsed power generators are devices that either convert the chemical energy stored in explosives into electrical energy or use the shock waves generated by explosives to release energy stored in ferroelectric and ferromagnetic materials. The objective of this book is to acquaint the reader with the principles of operation of explosive generators and to provide details on how to design, build, and test three types of generators: flux compression, ferroelectric, and ferromagnetic generators, which are the most developed and the most near term for practical applications. Containing a considerable amount of new experimental data that has been collected by the authors, this is the first book that treats all three types of explosive pulsed power generators. In addition, there is a brief introduction to a fourth type ix explosive generator called a moving magnet generator. As practical applications for these generators evolve, students, scientists, and engineers will have access to the results of a considerable body of experience gained by almost 10 years of intense research and development by the authors.