Download Free High Energy Chemistry Book in PDF and EPUB Free Download. You can read online High Energy Chemistry and write the review.

The 4th revised edition expands on the basic chemistry of high energy materials of the precious editions and examines new research developments, including hydrodynamics and ionic liquids. Applications in military and civil fields are discussed. This work is of interest to advanced students in chemistry, materials science and engineering, as well as to all those working in defense technology.
Authored by an insider with over 40 years of high energy materials (HEMs) experience in academia, industry and defense organizations, this handbook and ready reference covers all important HEMs from the 1950s to the present with their respective properties and intended purposes. Written at an attainable level for professionals, engineers and technicians alike, the book provides a comprehensive view of the current status and suggests further directions for research and development. An introductory chapter on the chemical and thermodynamic basics allows the reader to become acquainted with the fundamental features of explosives, before moving on to the important safety aspects in processing, handling, transportation and storage of high energy materials. With its collation of results and formulation strategies hitherto scattered in the literature, this should be on the shelf of every HEM researcher and developer.
This book is an in-depth treatment of the theoretical background relevant to an understanding of materials that can be obtained by using high-energy electron diffraction and microscopy.
Demystifying Explosives: Concepts in High Energy Materials explains the basic concepts of and the science behind the entire spectrum of high energy materials (HEMs) and gives a broad perspective about all types of HEMs and their interrelationships. Demystifying Explosives covers topics ranging from explosives, deflagration, detonation, and pyrotechnics to safety and security aspects of HEMS, looking at their aspects, particularly their inter-relatedness with respect to properties and performance. The book explains concepts related to the molecular structure of HEMs, their properties, performance parameters, detonation and shock waves including explosives and propellants. The theory-based title also deals with important (safety and security) and interesting (constructive applications) aspects connected with HEMs and is of fundamental use to students in their introduction to these materials and applications. - Explains the concept of high energy materials in simple language and down-to-earth examples - Worked examples and problems are given wherever required - Demystifies the concept of explosives - Limited use of big and complex equations - Questions and Suggested Reading are given at the end of each chapter
Written primarily for researchers and graduate students who are new in this emerging field, this book develops the necessary tools so that readers can follow the latest advances in this subject. Readers are first guided to examine the basic informations on nucleon-nucleon collisions and the use of the nucleus as an arena to study the interaction of one nucleon with another. A good survey of the relation between nucleon-nucleon and nucleus-nucleus collisions provides the proper comparison to study phenomena involving the more exotic quark-gluon plasma. Properties of the quark-gluon plasma and signatures for its detection are discussed to aid future searches and exploration for this exotic matter. Recent experimental findings are summarised.
This book provides a comprehensive overview on mechanochemistry including its history, high-energy ball milling process, equipment used and fundamentals behind the observed scientific phenomena. It also shows that mechanochemistry is highly applicable in the field of waste treatment. The text reviews 1017 studies utilizing mostly high-energy ball milling for the treatment of various types of consumer, technogenic and agricultural waste. The text is divided into chapters based on individual waste types. The book presents an Appendix compiling all studies arranged according to the application that the recycled waste is meant for. In this way, readers from both academia and companies interested either in the treatment of a particular waste, or particular application might easily locate sections of interest.
Providing a fundamental introduction to all aspects of modern plasma chemistry, this book describes mechanisms and kinetics of chemical processes in plasma, plasma statistics, thermodynamics, fluid mechanics and electrodynamics, as well as all major electric discharges applied in plasma chemistry. Fridman considers most of the major applications of plasma chemistry, from electronics to thermal coatings, from treatment of polymers to fuel conversion and hydrogen production and from plasma metallurgy to plasma medicine. It is helpful to engineers, scientists and students interested in plasma physics, plasma chemistry, plasma engineering and combustion, as well as chemical physics, lasers, energy systems and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics and numerical formulas for practical calculations related to specific plasma-chemical processes and applications. Problems and concept questions are provided, helpful in courses related to plasma, lasers, combustion, chemical kinetics, statistics and thermodynamics, and high-temperature and high-energy fluid mechanics.
Publisher Description
Materials Engineering for High Density Energy Storage provides first-hand knowledge about the design of safe and powerful batteries and the methods and approaches for enhancing the performance of next-generation batteries. The book explores how the innovative approaches currently employed, including thin films, nanoparticles and nanocomposites, are paving new ways to performance improvement. The topic's tremendous application potential will appeal to a broad audience, including materials scientists, physicists, electrochemists, libraries, and graduate students.