Download Free High Electron Mobility Transistor Structures In The Gallium Arsenide And Gallium Nitride Material Systems By Organometallic Vapor Phase Epitaxy Book in PDF and EPUB Free Download. You can read online High Electron Mobility Transistor Structures In The Gallium Arsenide And Gallium Nitride Material Systems By Organometallic Vapor Phase Epitaxy and write the review.

Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. Sections in every chapter of Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. Covers, in order, the growth method, material properties, and applications for each material Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires Provides topical and wide-ranging coverage from well-known authors in the field Part of the Materials for Electronic and Optoelectronic Applications series Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).
Fully updated with the latest technologies, this edition covers thefundamental principles underlying fabrication processes forsemiconductor devices along with integrated circuits made fromsilicon and gallium arsenide. Stresses fabrication criteria forsuch circuits as CMOS, bipolar, MOS, FET, etc. These diversetechnologies are introduced separately and then consolidated intocomplete circuits. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.
Novel gallium nitride based high electron mobility transistor structures were grown using metalorganic chemical vapor deposition. Traditional GaN based HEMT structures incorporate a version of an aluminum gallium nitride / gallium nitride single crystalline heterointerface for generation of a conductive two-dimensional electron gas. The grown structures aim to enhance the properties of their two-dimensional electron gases beyond commercially available designs. Novel material alterations to the traditional HEMT structures have established a new materials platform for this technology. Growth and characterization of these novel materials are presented.
Over the past few years, systems based on gallium nitride high-electron-mobility transistors (GaN HEMTs) have increasingly penetrated the markets for cellular telephone base stations, RADAR, and satellite communications. High power (several W/mm), continuous-wave (CW) operation of microwave HEMTs dissipates heat; as the device increases in temperature, its electron mobility drops and performance degrades. To enhance high-power performance and enable operation in high ambient temperature environments, the AlxGa1[-]xN/GaN epitaxial layers are attached to polycrystalline diamond substrates. e lower surface temperature rise on GaN-on- diamond is directly measured; subsequently, improved electrical performance is demonstrated on diamond versus the native (Si) substrates. Benchmark AlxGa1[-]xN/GaN devices are fabricated on SiC for comparison to diamond, Si, and bulk GaN substrates; the merits and performance of each is compared. In collaboration with Group4 Labs, X-band amplifier modules based on GaN-on-diamond HEMTs have been demonstrated for the first time. Recent efforts have focused on substituting AlxIn1[-]xN barriers in place of AlxGa1[-]xN to achieve higher output power at microwave frequencies and addressing the challenges of this new material system. Ultimately, these techniques may be combined to attain the utmost in device performance.
Initially, advances in the high frequency markets were begun by work in Gallium Arsenide systems. In recent years, however, the focus has shifted to the promise of ever higher power at ever higher frequency with the emergence of wide bandgap group III-V semiconductors, including Gallium Nitride. One area receiving attention is that of novel passivation materials for the active areas of AlGaN/GaN devices. Passivation is a critical issue because surface trapping effects are essentially unavoidable, even with the highest queality epitaxial layers, due to the polarized nature of the material. The question then becomes, which passivation materials offer the best mitigation of surface trapping effects with the least impact on parasitic elements detrimental to device performance. In this work, AlGaN/GaN devices passivated with AlSiN for both high frequency and high power operation are studied. The high frequency devices were fabricated alongside devices passivated with SiN, a standard passivation material, and characterized for both small signal and large signal performance. The AlSiN passivation was found to enhance both small and large signal performance, and so another set of devices was fabricated with high voltage, high power switching as the intended application. These devices were characterized for off-state breakdown, which was more than 4 times that of typical SiN-passivated devices, and time-domain and loadline measurements were performed.