Download Free High Dynamic Range Image Reconstruction Book in PDF and EPUB Free Download. You can read online High Dynamic Range Image Reconstruction and write the review.

High dynamic range imaging (HDRI) is an emerging field that has the potential to cause a great scientific and technological impact in the near future. Although new, this field is large and complex, with non-trivial relations to many different areas, such as image synthesis, computer vision, video and image processing, digital photography, special effects among others. For the above reasons,HDRI has been extensively researched over the past years and, consequently, the related scientific literature is vast. As an indication that the field is reaching maturity, tutorials and books on HDRI appeared. Moreover, this new resource has already reached interested practitioners in various application areas. In this book, we do not aim at covering the whole field of high dynamic range imaging and its applications, since it is a broad subject that is still evolving. Instead, our intent is to cover the basic principles behind HDRI and focus on one of the currently most important problems, both theoretically and practically. That is, the reconstruction of high dynamic range images from regular low dynamic range pictures. Table of Contents: Introduction / Digital Image / Imaging Devices and Calibration / HDR Reconstruction / HDRI Acquisition and Visualization / Tone Enhancement / References / Biography
Creating a realistic HDR image with multiple exposures depends on your ability to analyze a scene and translate your impressions into a photograph. Today’s digital camera sensors capture quite a bit, but still fall short of what your eyes see. Lightroom, Photoshop, and Photomatix software provide a more accurate and elegant solution to this the age-old problem. (Whether you’re shooting wild landscapes or calm real estate interiors, pro photographer Tim Cooper will help you capture and process HDR photographs that represent the reality you see, with subtlety, depth, and staying power. In this detailed step-by-step guide you will: Learn how to approach exposure and your DSLR camera settings Understand bracketing, ISO, and white balance Discover pro HDR tips like using a tripod and cable release for perfect alignment of multiple images Prepare and process your images in Lightroom and HDR Pro in Photoshop Use Photomatix to align and merge your final HDR photograph
At the time of rapid technological progress and uptake of High Dynamic Range (HDR) video content in numerous sectors, this book provides an overview of the key supporting technologies, discusses the effectiveness of various techniques, reviews the initial standardization efforts and explores new research directions in all aspects involved in HDR video systems. Topics addressed include content acquisition and production, tone mapping and inverse tone mapping operators, coding, quality of experience, and display technologies. This book also explores a number of applications using HDR video technologies in the automotive industry, medical imaging, spacecraft imaging, driving simulation and watermarking. By covering general to advanced topics, along with a broad and deep analysis, this book is suitable for both the researcher new or familiar to the area. With this book the reader will: - Gain a broad understanding of all the elements in the HDR video processing chain - Learn the most recent results of ongoing research - Understand the challenges and perspectives for HDR video technologies - Covers a broad range of topics encompassing the whole processing chain in HDR video systems, from acquisition to display - Provides a comprehensive overview of this fast emerging topic - Presents upcoming applications taking advantages of HDR
Techniques for high dynamic range (HDR) imaging make it possible to capture and store an increased range of luminances and colors as compared to what can be achieved with a conventional camera. This high amount of image information can be used in a wide range of applications, such as HDR displays, image-based lighting, tone-mapping, computer vision, and post-processing operations. HDR imaging has been an important concept in research and development for many years. Within the last couple of years it has also reached the consumer market, e.g. with TV displays that are capable of reproducing an increased dynamic range and peak luminance. This thesis presents a set of technical contributions within the field of HDR imaging. First, the area of HDR video tone-mapping is thoroughly reviewed, evaluated and developed upon. A subjective comparison experiment of existing methods is performed, followed by the development of novel techniques that overcome many of the problems evidenced by the evaluation. Second, a largescale objective comparison is presented, which evaluates existing techniques that are involved in HDR video distribution. From the results, a first open-source HDR video codec solution, Luma HDRv, is built using the best performing techniques. Third, a machine learning method is proposed for the purpose of reconstructing an HDR image from one single-exposure low dynamic range (LDR) image. The method is trained on a large set of HDR images, using recent advances in deep learning, and the results increase the quality and performance significantly as compared to existing algorithms. The areas for which contributions are presented can be closely inter-linked in the HDR imaging pipeline. Here, the thesis work helps in promoting efficient and high-quality HDR video distribution and display, as well as robust HDR image reconstruction from a single conventional LDR image.
This book explores the methods needed for creating and manipulating HDR content. HDR is a step change from traditional imaging; more closely matching what we see with our eyes. In the years since the first edition of this book appeared, HDR has become much more widespread, moving from a research concept to a standard imaging method. This new edition incorporates all the many developments in HDR since the first edition and once again emphasizes practical tips, including the authors' popular HDR Toolbox (available on the authors' website) for MATLAB and gives readers the tools they need to develop and experiment with new techniques for creating compelling HDR content. Key Features: Contains the HDR Toolbox for readers' experimentation on authors' website Offers an up-to-date, detailed guide to the theory and practice of high dynamic range imaging Covers all aspects of the field, from capture to display Provides benchmarks for evaluating HDR imagery
High Dynamic Range Video: Concepts, Technologies and Applications gives an introduction to a full range of topics within the end-to-end HDR video pipeline, covering the issues around capturing HDR and stereo HDR video, such as ghosting and use of legacy LDR systems, how HDR video can be manipulated, including real-time mixing, the very latest designs for HDR displays, HDR video on mobile devices, and the applications of HDR video. With this book, the reader will gain an overview of the current state-of-the art of HDR video, learn the potential of HDR video to provide a step change to a wide range of imaging applications, and attain the knowledge needed to introduce HDR video in their own applications. - Written by experts who have been actively researching High Dynamic Range Video - Covers a full range of topics within the end-to-end HDR video pipeline - Provides applications that demonstrate how HDR video can be applied
High Dynamic Range Imaging, Second Edition, is an essential resource for anyone working with images, whether it is for computer graphics, film, video, photography, or lighting design. It describes HDRI technology in its entirety and covers a wide-range of topics, from capture devices to tone reproduction and image-based lighting. The techniques described enable students to produce images that have a dynamic range much closer to that found in the real world, leading to an unparalleled visual experience. This revised edition includes new chapters on High Dynamic Range Video Encoding, High Dynamic Range Image Encoding, and High Dynamic Range Display Devices. All existing chapters have been updated to reflect the current state-of-the-art technology. As both an introduction to the field and an authoritative technical reference, this book is essential for anyone working with images, whether in computer graphics, film, video, photography, or lighting design. - New material includes chapters on High Dynamic Range Video Encoding, High Dynamic Range Image Encoding, and High Dynammic Range Display Devices - Written by the inventors and initial implementors of High Dynamic Range Imaging - Covers the basic concepts (including just enough about human vision to explain why HDR images are necessary), image capture, image encoding, file formats, display techniques, tone mapping for lower dynamic range display, and the use of HDR images and calculations in 3D rendering - Range and depth of coverage is good for the knowledgeable researcher as well as those who are just starting to learn about High Dynamic Range imaging - The prior edition of this book included a DVD-ROM. Files from the DVD-ROM can be accessed at: http://www.erikreinhard.com/hdr_2nd/index.html
This three-volume set (CCIS 1367-1368) constitutes the refereed proceedings of the 5th International Conference on Computer Vision and Image Processing, CVIP 2020, held in Prayagraj, India, in December 2020. Due to the COVID-19 pandemic the conference was partially held online. The 134 papers papers were carefully reviewed and selected from 352 submissions. The papers present recent research on such topics as biometrics, forensics, content protection, image enhancement/super-resolution/restoration, motion and tracking, image or video retrieval, image, image/video processing for autonomous vehicles, video scene understanding, human-computer interaction, document image analysis, face, iris, emotion, sign language and gesture recognition, 3D image/video processing, action and event detection/recognition, medical image and video analysis, vision-based human GAIT analysis, remote sensing, and more.
The workshops will focus on multimedia technologies, theories, applications They will be held together with the main conference ICME 2021 ( 50217 )
To enhance the overall viewing experience (for cinema, TV, games, AR/VR) the media industry is continuously striving to improve image quality. Currently the emphasis is on High Dynamic Range (HDR) and Wide Colour Gamut (WCG) technologies, which yield images with greater contrast and more vivid colours. The uptake of these technologies, however, has been hampered by the significant challenge of understanding the science behind visual perception. Vision Models for High Dynamic Range and Wide Colour Gamut Imaging provides university researchers and graduate students in computer science, computer engineering, vision science, as well as industry R&D engineers, an insight into the science and methods for HDR and WCG. It presents the underlying principles and latest practical methods in a detailed and accessible way, highlighting how the use of vision models is a key element of all state-of-the-art methods for these emerging technologies. - Presents the underlying vision science principles and models that are essential to the emerging technologies of HDR and WCG - Explores state-of-the-art techniques for tone and gamut mapping - Discusses open challenges and future directions of HDR and WCG research