Download Free High Conductivity Solid Ionic Conductors Recent Trends And Applications Book in PDF and EPUB Free Download. You can read online High Conductivity Solid Ionic Conductors Recent Trends And Applications and write the review.

This book describes the history and future views of high conductivity solid ionic conductors, ionic transport theories in solids, relations between structures and ionic transport in solid ionic and ionic electronic mixed conductors.
This book describes, for the first time in a modern text, the fundamental principles on which solid state electrochemistry is based. In this sense it is in contrast to other books in the field which concentrate on a description of materials. Topics include solid (ceramic) electrolytes, glasses, polymer electrolytes, intercalation electrodes, interfaces and applications. The different nature of ionic conductivity in ceramic, glassy and polymer electrolytes is described as are the thermodynamics and kinetics of intercalation reactions. The interface between solid electrolytes and electrodes is discussed and contrasted with the more conventional liquid state electrochemistry. The text provides an essential foundation of understanding for postgraduates or others entering the field for the first time and will also be of value in advanced undergraduate courses.
Electrochemistry is the branch of chemistry that deals with the chemical action of electricity and the production of electricity by chemical reactions. In a world short of energy sources yet long on energy use, electrochemistry is a critical component of the mix necessary to keep the world economies growing. Electrochemistry is involved with such important applications as batteries, fuel cells, corrosion studies, hydrogen energy conversion, bioelectricity. Research on electrolytes, cells, and electrodes is within the scope of this old but extremely dynamic field.
Contents:Recent Trends in Solid State Ionics (T Takahashi)Theoretical Aspects of Fast Ion Conduction in Solids (D Brinkman)Chemical Bonding and Interaction Processes in Framework Structures (P Hagenmuller)Characterization of New Ambient Temperature Lithium Polymer-Electrolyte (G C Farrington)Relaxation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses (C A Angell & H Senapati)Electrochemical Studies on High Tc Superconductors (L-Q Chen & X-J Huang)Light Scattering Studies on Superionic Conductor YSZ (M Ishigame et al.)and others Readership: Solid state physicists, materials scientists and condensed matter physicists.
Superionic Solids and Solid Electrolytes: Recent Trends describes the fundamental aspects, unique properties, and potential applications of superionic solids and solid electrolytes. These materials significantly contribute to the development of the solid state ionics technology. This book is divided into 17 chapters, and begins with an overview of various materials, such as glasses, heterogeneous or dispersed phase conductors, proton conductors, Nasicon, and fluorites. These topics are followed by a discussion on the problems related with entropy effects, subsurface space charge, and defect formation parameters. Significant chapters deal with the phenomenological, fractal, molecular dynamics, fluctuations, and correlations in superionic solid and solid electrolyte materials. A chapter tackles the solid state battery applications of solid electrolytes. This text ends with a chapter on the prediction of the potentials of activity in superionics. This book will be of value to graduate students and researchers who are interested in the solid state ionics technology.
Design and Operation of Solid Oxide Fuel Cells: The Systems Engineering Vision for Industrial Application presents a comprehensive, critical and accessible review of the latest research in the field of solid oxide fuel cells (SOFCs). As well as discussing the theoretical aspects of the field, the book explores a diverse range of power applications, such as hybrid power plants, polygeneration, distributed electricity generation, energy storage and waste management—all with a focus on modeling and computational skills. Dr. Sharifzadeh presents the associated risks and limitations throughout the discussion, providing a very complete and thorough analysis of SOFCs and their control and operation in power plants. The first of its kind, this book will be of particular interest to energy engineers, industry experts and academic researchers in the energy, power and transportation industries, as well as those working and researching in the chemical, environmental and material sectors. - Closes the gap between various power engineering disciples by considering a diverse variety of applications and sectors - Presents and reviews a variety of modeling techniques and considers regulations throughout - Includes CFD modeling examples and process simulation and optimization programming guidance
The topics covered in this volume include the materials aspect of crystalline and composite electrolytes, polymers, and glasses. Twenty-one invited and forty-five contributed papers emphasize ionic transport, dielectric studies, electronic and mixed conductors, proton conductors, cathode materials, electrochromism, experimental techniques and application of solid state ionic materials in batteries, fuel cells, electrochromic displays and sensors.
The only comprehensive handbook on this important and rapidly developing topic combines fundamental information with a brief overview of recent advances in solid state electrochemistry, primarily targeting specialists working in this scientific field. Particular attention is focused on the most important developments performed during the last decade, methodological and theoretical aspects of solid state electrochemistry, as well as practical applications. The highly experienced editor has included chapters with critical reviews of theoretical approaches, experimental methods and modeling techniques, providing definitions and explaining relevant terminology as necessary. Several other chapters cover all the key groups of the ion-conducting solids important for practice, namely cationic, protonic, oxygen-anionic and mixed conductors, but also conducting polymer and hybrid materials. Finally, the whole is rounded off by brief surveys of advances in the fields of fuel cells, solid-state batteries, electrochemical sensors, and other applications of ion-conducting solids. Due to the very interdisciplinary nature of this topic, this is of great interest to material scientists, polymer chemists, physicists, and industrial scientists, too.
Supercapacitors: Materials, Design, and Commercialization provides a comprehensive overview of the latest research trends and opportunities in supercapacitors, and particularly in terms of novel materials and electrolytes.The book will address the transformation in supercapacitive technology from double layer capacitance to battery-type capacitance, providing a clear understanding of the conceptual differences between various charge storage processes for supercapacitors, charge storage based on materials and electrolytes, and calculation for capacitance for these charge processes. Detailed chapters discuss recent developments in materials, such as carbons, chalcogenides, MXene and phosphorene, various polymer nanocomposites, and polyoxometalates for supercapacitors. This is followed by in-depth coverage of electrolytes, including the evolution of electrolytes from aqueous to water-in-salt electrolytes and their role in improving the energy density of supercapacitors. The final part of the book examines the role of artificial intelligence in the design of supercapacitors, and latest developments in translating novel supercapacitor technologies from laboratory-scale research to a commercialization.This is a valuable resource for advanced students, researchers, and scientists in the fields of energy storage, electrical engineering, materials science, and chemical engineering, as well as engineers and R&D personnel working with supercapacitors or energy storage in an industrial setting. - Brings together the latest developments in supercapacitor materials and electrolytes - Discusses cutting-edge charge storage concepts and methods for supercapacitors - Addresses the role of machine learning and the scale-up from laboratory to commercialization
"The topics covered in this volume include the materials aspect of crystalline and composite electrolytes, polymers, and glasses. Twenty-one invited and forty-five contributed papers emphasize ionic transport, dielectric studies, electronic and mixed conductors, proton conductors, cathode materials, electrochromism, experimental techniques and application of solid state ionic materials in batteries, fuel cells, electrochromic displays and sensors."--Publisher's website.