Download Free High Accuracy Algorithm For The Differential Equations Governing Anomalous Diffusion Book in PDF and EPUB Free Download. You can read online High Accuracy Algorithm For The Differential Equations Governing Anomalous Diffusion and write the review.

The aim of this book is to extend the application field of 'anomalous diffusion', and describe the newly built models and the simulation techniques to the models.The book first introduces 'anomalous diffusion' from the statistical physics point of view, then discusses the models characterizing anomalous diffusion and its applications, including the Fokker-Planck equation, the Feymann-Kac equations describing the functional distribution of the anomalous trajectories of the particles, and also the microscopic model — Langevin type equation. The second main part focuses on providing the high accuracy schemes for these kinds of models, and the corresponding convergence and stability analysis.
This book investigates statistical observables for anomalous and nonergodic dynamics, focusing on the dynamical behaviors of particles modelled by non-Brownian stochastic processes in the complex real-world environment. Statistical observables are widely used for anomalous and nonergodic stochastic systems, thus serving as a key to uncover their dynamics. This study explores the cutting edge of anomalous and nonergodic diffusion from the perspectives of mathematics, computer science, statistical and biological physics, and chemistry. With this interdisciplinary approach, multiple physical applications and mathematical issues are discussed, including stochastic and deterministic modelling, analyses of (stochastic) partial differential equations (PDEs), scientific computations and stochastic analyses, etc. Through regularity analysis, numerical scheme design and numerical experiments, the book also derives the governing equations for the probability density function of statistical observables, linking stochastic processes with PDEs. The book will appeal to both researchers of electrical engineering expert in the niche area of statistical observables and stochastic systems and scientists in a broad range of fields interested in anomalous diffusion, especially applied mathematicians and statistical physicists.
Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.
This book aims to introduce some new trends and results on the study of the fractional differential equations, and to provide a good understanding of this field to beginners who are interested in this field, which is the authors' beautiful hope.This book describes theoretical and numerical aspects of the fractional partial differential equations, including the authors' researches in this field, such as the fractional Nonlinear Schrödinger equations, fractional Landau-Lifshitz equations and fractional Ginzburg-Landau equations. It also covers enough fundamental knowledge on the fractional derivatives and fractional integrals, and enough background of the fractional PDEs.
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Fractional calculus falls under the domain of mathematical analysis. It focuses on the study of the differentiation operator in terms of real and complex number powers. Fractional calculus has various applications across other scientific fields such as polymer chemistry through structural damping models, in quantum theory through the analysis of Schrödinger's equation, etc. This book elucidates new techniques and their applications in a multidisciplinary manner. The chapters provide significant information of this field to help develop a good understanding of fractional calculus and related fields. It also attempts to understand the multiple branches that fall under this discipline and how such concepts have practical applications. It aims to serve as a resource guide for students and experts alike as well as contribute to the growth of the discipline.
A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.
The main purpose of the book is to introduce the readers to the numerical integration of the Cauchy problem for delay differential equations (DDEs). Peculiarities and differences that DDEs exhibit with respect to ordinary differential equations are preliminarily outlined by numerous examples illustrating some unexpected, and often surprising, behaviours of the analytical and numerical solutions. The effect of various kinds of delays on the regularity of the solution is described and some essential existence and uniqueness results are reported. The book is centered on the use of Runge-Kutta methods continuously extended by polynomial interpolation, includes a brief review of the various approaches existing in the literature, and develops an exhaustive error and well-posedness analysis for the general classes of one-step and multistep methods. The book presents a comprehensive development of continuous extensions of Runge-Kutta methods which are of interest also in the numerical treatment of more general problems such as dense output, discontinuous equations, etc. Some deeper insight into convergence and superconvergence of continuous Runge-Kutta methods is carried out for DDEs with various kinds of delays. The stepsize control mechanism is also developed on a firm mathematical basis relying on the discrete and continuous local error estimates. Classical results and a unconventional analysis of "stability with respect to forcing term" is reviewed for ordinary differential equations in view of the subsequent numerical stability analysis. Moreover, an exhaustive description of stability domains for some test DDEs is carried out and the corresponding stability requirements for the numerical methods are assessed and investigated. Alternative approaches, based on suitable formulation of DDEs as partial differential equations and subsequent semidiscretization are briefly described and compared with the classical approach. A list of available codes is provided, and illustrative examples, pseudo-codes and numerical experiments are included throughout the book.
This volume provides the latest developments in the field of fractional dynamics, which covers fractional (anomalous) transport phenomena, fractional statistical mechanics, fractional quantum mechanics and fractional quantum field theory. The contributors are selected based on their active and important contributions to their respective topics. This volume is the first of its kind that covers such a comprehensive range of topics in fractional dynamics. It will point out to advanced undergraduate and graduate students, and young researchers the possible directions of research in this subject.In addition to those who intend to work in this field and those already in the field, this volume will also be useful for researchers not directly involved in the field, but want to know the current status and trends of development in this subject. This latter group includes theoretical chemists, mathematical biologists and engineers.