Download Free Hierarchy And Dynamics In Neural Networks Book in PDF and EPUB Free Download. You can read online Hierarchy And Dynamics In Neural Networks and write the review.

Hierarchy is a central feature in the organisation of complex biological systems and particularly the structure and function of neural networks. While other aspects of brain connectivity such as regionalisation, modularity or motif composition have been discussed elsewhere, no detailed analysis has been presented so far on the role of hierarchy and its connection to brain dynamics. Recent discussions among many of our colleagues have shown an increasing interest in hierarchy (of spatial, temporal and dynamic features), and this is an emerging key question in neuroscience as well as generally in the field of network science, due to its links with concepts of control, efficiency and development across scales (e.g. Hilgetag et al. Science, 1996; Ravasz et al. Science, 2002; Bassett et al. PNAS, 2006; Mueller-Linow et al. PLoS Comp. Biol., in press). The proposed Research Topic will address recent findings from a theoretical as well as experimental perspective including contributions under the following four headings: 1) Topology: Detecting and characterizing network hierarchy; 2) Experiments: Neural dynamics across hierarchical scales; 3) Dynamics: Activity spread, oscillations, and synchronization in hierarchical networks; 4) Dynamics: Stable functioning and information processing in hierarchical networks.
This collection of articles introduces the idea of a hierarchical order in chaotic systems and natural phenomena. To understand nature, nonlinear sciences use a multidisciplinary perspective. Therefore the book integrates research work of different fields: experimental evidence for the theory drawn from physics, biology and chemistry; theoretical progress in mathematical treatment, numerical techniques and graphical methods of nonlinear sciences; and to not-yet-understood philosophical and fundamental problems related to chaos and cosmos, chaos and quantum mechanics or evolutionary dynamics. Featuring the most recent advances in nonlinear dynamics this collection should provide an indispensable reference source and starting point for further research concerning dynamical and hierarchical chaotic systems. Besides this book is in honor of Professor O E Rössler, one of the pioneers of Chaos Theory, who celebrated his 50th birthday in May 1990.
Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in limited domains. This book sets out to reproduce the robustness and speed of human perception by proposing a hierarchical neural network architecture for iterative image interpretation. The proposed architecture can be trained using unsupervised and supervised learning techniques. Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks.
Neural Network Dynamics is the latest volume in the Perspectives in Neural Computing series. It contains papers presented at the 1991 Workshop on Complex Dynamics in Neural Networks, held at IIASS in Vietri, Italy. The workshop encompassed a wide range of topics in which neural networks play a fundamental role, and aimed to bridge the gap between neural computation and computational neuroscience. The papers - which have been updated where necessary to include new results - are divided into four sections, covering the foundations of neural network dynamics, oscillatory neural networks, as well as scientific and biological applications of neural networks. Among the topics discussed are: A general analysis of neural network activity; Descriptions of various network architectures and nodes; Correlated neuronal firing; A theoretical framework for analyzing the behaviour of real and simulated neuronal networks; The structural properties of proteins; Nuclear phenomenology; Resonance searches in high energy physics; The investigation of information storage; Visual cortical architecture; Visual processing. Neural Network Dynamics is the first volume to cover neural networks and computational neuroscience in such detail. Although it is primarily aimed at researchers and postgraduate students in the above disciplines, it will also be of interest to researchers in electrical engineering, medicine, psychology and philosophy.
Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in limited domains. This book sets out to reproduce the robustness and speed of human perception by proposing a hierarchical neural network architecture for iterative image interpretation. The proposed architecture can be trained using unsupervised and supervised learning techniques. Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks.
Significant advances in brain research have been made, but investigators who face the resulting explosion of data need new methods to integrate the pieces of the "brain puzzle." Based on the expertise of more than 100 neuroscientists and computer specialists, this new volume examines how computer technology can meet that need. Featuring outstanding color photography, the book presents an overview of the complexity of brain research, which covers the spectrum from human behavior to genetic mechanisms. Advances in vision, substance abuse, pain, and schizophrenia are highlighted. The committee explores the potential benefits of computer graphics, database systems, and communications networks in neuroscience and reviews the available technology. Recommendations center on a proposed Brain Mapping Initiative, with an agenda for implementation and a look at issues such as privacy and accessibility.
This book will be of interest to anyone who wishes to know what role mathematics can play in attempting to comprehend the dynamics of the human brain. It also aims to serve as a general introduction to neuromathematics. The book gives the reader a qualitative understanding and working knowledge of useful mathematical applications to the field of neuroscience. The book is readable by those who have little knowledge of mathematics for neuroscience but are committed to begin acquiring such knowledge.
Neurowissenschaftler suchen nach Antworten auf die Fragen, wie wir lernen und Information speichern, welche Prozesse im Gehirn verantwortlich sind und in welchem Zeitrahmen diese ablaufen. Die Konzepte, die aus der Physik kommen und weiterentwickelt werden, können in Medizin und Soziologie, aber auch in Robotik und Bildanalyse Anwendung finden. Zentrales Thema dieses Buches sind die sogenannten kritischen Phänomene im Gehirn. Diese werden mithilfe mathematischer und physikalischer Modelle beschrieben, mit denen man auch Erdbeben, Waldbrände oder die Ausbreitung von Epidemien modellieren kann. Neuere Erkenntnisse haben ergeben, dass diese selbstgeordneten Instabilitäten auch im Nervensystem auftreten. Dieses Referenzwerk stellt theoretische und experimentelle Befunde internationaler Gehirnforschung vor zeichnet die Perspektiven dieses neuen Forschungsfeldes auf.
This Research Topic is part of the Methods and Applications in Physiology series. Other titles in this series are: • Methods and Applications in Aquatic Physiology • Methods and Applications in Clinical and Translational Physiology • Methods and Applications in Computational Physiology and Medicine • Methods and Applications in Environmental, Aviation and Space Physiology • Methods and Applications in Exercise Physiology • Methods and Applications in Fractal Physiology • Methods and Applications in Invertebrate Physiology • Methods and Applications in Metabolic Physiology • Methods and Applications in Physio-logging • Methods and Applications in Striated Muscle Physiology • Methods and Applications in Respiratory Physiology • Methods and Applications in Vascular Physiology • New Methods for Red Blood Cell Research and Diagnosis, Volume II • Combining Computational and Experimental Approaches to Characterize Ion Channels and Transporters
How do 'minds' work? In 'Exploring Robotic Minds', Jun Tani answers this fundamental question by reviewing his own pioneering neurorobotics research project.