Download Free Hierarchical Object Representations In The Visual Cortex And Computer Vision Book in PDF and EPUB Free Download. You can read online Hierarchical Object Representations In The Visual Cortex And Computer Vision and write the review.

Over the past 40 years, neurobiology and computational neuroscience has proved that deeper understanding of visual processes in humans and non-human primates can lead to important advancements in computational perception theories and systems. One of the main difficulties that arises when designing automatic vision systems is developing a mechanism that can recognize - or simply find - an object when faced with all the possible variations that may occur in a natural scene, with the ease of the primate visual system. The area of the brain in primates that is dedicated at analyzing visual information is the visual cortex. The visual cortex performs a wide variety of complex tasks by means of simple operations. These seemingly simple operations are applied to several layers of neurons organized into a hierarchy, the layers representing increasingly complex, abstract intermediate processing stages. In this Research Topic we propose to bring together current efforts in neurophysiology and computer vision in order 1) To understand how the visual cortex encodes an object from a starting point where neurons respond to lines, bars or edges to the representation of an object at the top of the hierarchy that is invariant to illumination, size, location, viewpoint, rotation and robust to occlusions and clutter; and 2) How the design of automatic vision systems benefit from that knowledge to get closer to human accuracy, efficiency and robustness to variations.
Over the past 40 years, neurobiology and computational neuroscience has proved that deeper understanding of visual processes in humans and non-human primates can lead to important advancements in computational perception theories and systems. One of the main difficulties that arises when designing automatic vision systems is developing a mechanism that can recognize - or simply find - an object when faced with all the possible variations that may occur in a natural scene, with the ease of the primate visual system. The area of the brain in primates that is dedicated at analyzing visual information is the visual cortex. The visual cortex performs a wide variety of complex tasks by means of simple operations. These seemingly simple operations are applied to several layers of neurons organized into a hierarchy, the layers representing increasingly complex, abstract intermediate processing stages. In this Research Topic we propose to bring together current efforts in neurophysiology and computer vision in order 1) To understand how the visual cortex encodes an object from a starting point where neurons respond to lines, bars or edges to the representation of an object at the top of the hierarchy that is invariant to illumination, size, location, viewpoint, rotation and robust to occlusions and clutter; and 2) How the design of automatic vision systems benefit from that knowledge to get closer to human accuracy, efficiency and robustness to variations.
A unique multidisciplinary perspective on the problem of visual object categorization.
In many computer vision applications, objects have to be learned and recognized in images or image sequences. This book presents new probabilistic hierarchical models that allow an efficient representation of multiple objects of different categories, scales, rotations, and views. The idea is to exploit similarities between objects and object parts in order to share calculations and avoid redundant information. Furthermore inference approaches for fast and robust detection are presented. These new approaches combine the idea of compositional and similarity hierarchies and overcome limitations of previous methods. Besides classical object recognition the book shows the use for detection of human poses in a project for gait analysis. The use of activity detection is presented for the design of environments for ageing, to identify activities and behavior patterns in smart homes. In a presented project for parking spot detection using an intelligent vehicle, the proposed approaches are used to hierarchically model the environment of the vehicle for an efficient and robust interpretation of the scene in real-time.
Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in limited domains. This book sets out to reproduce the robustness and speed of human perception by proposing a hierarchical neural network architecture for iterative image interpretation. The proposed architecture can be trained using unsupervised and supervised learning techniques. Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks.
The four-volume set LNCS 8925, 8926, 8927, and 8928 comprises the thoroughly refereed post-workshop proceedings of the Workshops that took place in conjunction with the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 203 workshop papers were carefully reviewed and selected for inclusion in the proceedings. They where presented at workshops with the following themes: where computer vision meets art; computer vision in vehicle technology; spontaneous facial behavior analysis; consumer depth cameras for computer vision; "chalearn" looking at people: pose, recovery, action/interaction, gesture recognition; video event categorization, tagging and retrieval towards big data; computer vision with local binary pattern variants; visual object tracking challenge; computer vision + ontology applies cross-disciplinary technologies; visual perception of affordance and functional visual primitives for scene analysis; graphical models in computer vision; light fields for computer vision; computer vision for road scene understanding and autonomous driving; soft biometrics; transferring and adapting source knowledge in computer vision; surveillance and re-identification; color and photometry in computer vision; assistive computer vision and robotics; computer vision problems in plant phenotyping; and non-rigid shape analysis and deformable image alignment. Additionally, a panel discussion on video segmentation is included.
This comprehensive reference provides easy access to relevant information on all aspects of Computer Vision. An A-Z format of over 240 entries offers a diverse range of topics for those seeking entry into any aspect within the broad field of Computer Vision. Over 200 Authors from both industry and academia contributed to this volume. Each entry includes synonyms, a definition and discussion of the topic, and a robust bibliography. Extensive cross-references to other entries support efficient, user-friendly searches for immediate access to relevant information. Entries were peer-reviewed by a distinguished international advisory board, both scientifically and geographically diverse, ensuring balanced coverage. Over 3700 bibliographic references for further reading enable deeper exploration into any of the topics covered. The content of Computer Vision: A Reference Guide is expository and tutorial, making the book a practical resource for students who are considering entering the field, as well as professionals in other fields who need to access this vital information but may not have the time to work their way through an entire text on their topic of interest.
Some of the best vision scientists in the world in their respective fields have contributed to chapters in this book. They have expertise in a wide variety of fields, including bioengineering, basic and clinical visual science, medicine, neurophysiology, optometry, and psychology. Their combined efforts have resulted in a high quality book that covers modeling and quantitative analysis of optical, neurosensory, oculomotor, perceptual and clinical systems. It includes only those techniques and models that have such fundamentally strong physiological, control system, and perceptual bases that they will serve as foundations for models and analysis techniques in the future. The book is aimed first towards seniors and beginning graduate students in biomedical engineering, neurophysiology, optometry, and psychology, who will gain a broad understanding of quantitative analysis of the visual system. In addition, it has sufficient depth in each area to be useful as an updated reference and tutorial for graduate and post-doctoral students, as well as general vision scientists.
This book constitutes the strictly refereed post-workshop proceedings of the second International Workshop on Object Representation in Computer Vision, held in conjunction with ECCV '96 in Cambridge, UK, in April 1996. The 15 revised full papers contained in the book were selected from 45 submissions for presentation at the workshop. Also included are three invited contributions based on the talks by Takeo Kanade, Jan Koenderink, and Ram Nevatia as well as a workshop report by the volume editors summarizing several panel discussions and the general state of the art in the area.
The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances in the field. The target audience consists of researchers or students working in AI, robotics, or vision who would like to understand what methods and representations are available for these problems. This lecture summarizes what is and isn't possible to do reliably today, and overviews key concepts that could be employed in systems requiring visual categorization. Table of Contents: Introduction / Overview: Recognition of Specific Objects / Local Features: Detection and Description / Matching Local Features / Geometric Verification of Matched Features / Example Systems: Specific-Object Recognition / Overview: Recognition of Generic Object Categories / Representations for Object Categories / Generic Object Detection: Finding and Scoring Candidates / Learning Generic Object Category Models / Example Systems: Generic Object Recognition / Other Considerations and Current Challenges / Conclusions