Download Free Hierarchical Micro Nanostructured Materials Book in PDF and EPUB Free Download. You can read online Hierarchical Micro Nanostructured Materials and write the review.

Hierarchical Micro/Nanostructured Materials: Fabrication, Properties, and Applications presents the latest fabrication, properties, and applications of hierarchical micro/nanostructured materials in two sections-powders and arrays. After a general introduction to hierarchical micro/nanostructured materials, the first section begins with a detailed
Hierarchical Micro/Nanostructured Materials: Fabrication, Properties, and Applications presents the latest fabrication, properties, and applications of hierarchical micro/nanostructured materials in two sections powders and arrays. After a general introduction to hierarchical micro/nanostructured materials, the first section begins with a detailed discussion of the methods of mass production for hierarchical micro/nanostructured powders, including structure-directed solvothermal routes, template-etching strategies, and electrospinning technologies. It then proceeds to address structurally enhanced adsorption and photocatalytic performances. The second section describes strategies for the fabrication of hierarchical micro/nanostructured object arrays and their devices, such as modified colloidal lithographies-based solution and electrodeposition. It also examines the structure-dependent properties and performances of the micro/nanostructured arrays, including surface wettability, optical properties, surface-enhanced Raman scattering (SERS) effects, and gas-sensing performances. In its cutting-edge coverage, Hierarchical Micro/Nanostructured Materials: Fabrication, Properties, and Applications explores the use of hierarchical micro/nanostructured materials in environmental remediation and detection devices, commenting on future trends and applications in catalysis, integrated nanophotonics, optical devices, super-high density storage media, sensors, nanobiotechnology, SERS substrates, and more."
An overview of the recent developments and prospects in this highly topical area, covering the synthesis, characterization, properties and applications of hierarchical nanostructured materials. The book concentrates on those materials relevant for research and development in the fields of energy, biomedicine and environmental protection, with a strong focus on 3D materials based on nanocarbons, mesoporous silicates, hydroxides, core-shell particles and helical nanostructures. Thanks to its clear concept and application-oriented approach, this is an essential reference for experienced researchers and newcomers to the field alike.
Discusses how nanostructured materials can be applied to energy devices, with an emphasis on the process of generation to storage and consumption.
Nanoindentation of Natural Materials: Hierarchical and Functionally Graded Microstructures provides a systematic introduction and review of state-of-the-art statistical hierarchical and functionally graded structures found in bone, teeth, hair, and scales, from a nanoindentation perspective, including detailed microstructure and composition. It covers the basics of hierarchical and functionally graded structures and nanoindentation techniques and detailed discussion with correlation micro/nano mechanical-structures The book includes practical issues backed with experimental data
This book focusses on the fundamental principles and recent advances in the materials science developed for tissue engineering purposes.
Nanostructured Materials: Physicochemical Chemistry Fundamentals for Energy and Environmental Applications summarizes research knowledge and helps advanced students, researchers and industrial technicians understand specific applications of nanomaterials in energy and the environment. Sections bring a strong foundational focus on the physicochemical basis of nanomaterials for these applications, the basic theory and physicochemical basis of nanomaterials, an energy and environment applications examination of typical cases, and progress. This book will appeal to researchers in the chemical sciences (inorganic and physical chemistry, coordination chemistry, molecular dynamics, electrochemistry, photocatalysis, thermocatalysis, thermodynamics, etc.), nanoscience (graphene, carbon nanotubes, nanocrystals, nano catalysis, energy, and environment-nano science), and more. Efficient use of energy, eco-friendly environmental systems, and technologies play an important role in global sustainable development. Multifunctional nanocomposites have excellent properties and can meet the practical needs of energy development and environmental treatment. They have been gradually applied in chemical materials, energy preparation, pollution control and other fields and have achieved impressive development. Provides a unified overview of a large variety of different applications on the design and synthesis of nanomaterials with potential applications in various conventional and new energy and environmental technologies Provides a strong foundational focus on the analysis of the structure of nanomaterials, the basic principles of design (nanomaterial structure-activity relationship), and the theoretical basis of physical chemistry (theoretical basis of nanomaterial design and applications) Meets a need to summarize and examine ongoing research and advances in a rapidly developing field
This book focuses on the fundamental concepts and physical and chemical aspects of pulsed laser ablation of solid targets in liquid environments and its applications in the preparation of nanomaterials and fabrication of nanostructures. The areas of focus include basic thermodynamic and kinetic processes of laser ablation in liquids, and its applic
Surface Science of Photocatalysis, Volume 32, summarizes significant findings on the surface science behind various classic and novel photocatalysts for energy and environmental applications, with special emphasis on important surface/interface processes in photocatalysis, such as interfacial charge transfer, function of co-catalysts, and adsorption over photocatalyst surface. This book timely and systematically reviews the state-of-the-art of the surface science in semiconductor-based photocatalysis, serving as a useful reference book for both new and experienced researchers in this field. Provides timely reviews on cutting-edge research on surface science and photocatalysts Comprehensively discusses novel photocatalysts, such as metal oxides, metal sulphides, graphitic carbon nitrides, graphene and metal-organics Presents important surface/interface processes in photocatalysis, like Z-scheme system and surface heterojunctions Investigates the function of co-catalysts and the adsorption on photocatalyst surfaces Edited by world-leading researchers in interface science