Download Free Heuristics For The Stochastic Capacitated Lot Sizing Problem Book in PDF and EPUB Free Download. You can read online Heuristics For The Stochastic Capacitated Lot Sizing Problem and write the review.

In the real world, production systems are affected by external and internal uncertainties. Stochastic demand - an external uncertainty - arises mainly due to forecast errors and unknown behavior of customers in future. Internal uncertainties occur in situations where random yield, random production capacity, or stochastic processing times affect the productivity of a manufacturing system. The resulting stochastic production output is especially present in industries with modern and complex technologies as the semiconductor industry. This thesis provides model formulations and solution methods for capacitated dynamic lot sizing problems with stochastic demand and stochastic production output that can be used by practitioners within Manufacturing Resource Planning Systems (MRP), Capacitated Production Planning Systems (CPPS), and Advanced Planning Systems (APS). In all models, backordered demand is controlled with service levels. Numerical studies compare the solution methods and give managerial implications in presence of stochastic production output. This book addresses practitioners, consultants, and developers as well as students, lecturers, and researchers with focus on lot sizing, production planning, and supply chain management.
This book constitutes the refereed proceedings of the 14th European Conference on Evolutionary Computation in Combinatorial Optimization, Evo COP 2014, held in Granada, Spain, in April 2014, co-located with the Evo*2014 events Euro GP, Evo BIO, Evo MUSART and Evo Applications. The 20 revised full papers presented were carefully reviewed and selected from 42 submissions. The papers cover the following topics: swarm intelligence algorithms, fitness landscapes and adaptive algorithms, real world and routing problems and cooperative and metaheuristic search.
Companies frequently operate in an uncertain environment and many real life production planning problems imply volatility and stochastics of the customer demands. Thereby, the determination of the lot-sizes and the production periods significantly affects the profitability of a manufacturing company and the service offered to the customers. This thesis provides practice-oriented formulations and variants of dynamic lot-sizing problems in presence of restricted production resources and demand uncertainty. The demand fulfillment is regulated by service level constraints. Additionally, integrated production and remanufacturing planning under demand and return uncertainty in closed-loop supply chains is addressed. This book offers introductions to these problems and presents approximation models that can be applied under uncertainty. Comprehensive numerical studies provide managerial implications. The book is written for practitioners interested in supply chain management and production as well as for lecturers and students in business studies with a focus on supply chain management and operations management.
Quantitativeapproachesforsolvingproductionplanningandinventorymanagement problems in industry have gained growing importance in the past years. Due to the increasinguse of AdvancedPlanningSystems, a widespreadpracticalapplicationof the sophisticated optimization models and algorithms developed by the Production Management and Operations Research community now seem within reach. The possibility that productscan be replaced by certain substitute productsexists in various application areas of production planning and inventory management. Substitutions can be useful for a number of reasons, among others to circ- vent production and supply bottlenecks and disruptions, increase the service level, reduce setup costs and times, and lower inventories and thereby decrease ca- tal lockup. Considering the current trend in industry towards shorter product life cycles and greater product variety, the importance of substitutions appears likely to grow. Closely related to substitutions are ?exible bills-of-materials and recipes in multi-level production systems. However, so far, the aspect of substitutions has not attracted much attention in academic literature. Existing lot-sizing models matching complex requirements of industrial optimization problems (e.g., constrained capacities, sequence-dependent setups, multiple resources) such as the Capacitated Lot-Sizing Problem with Sequence-Dependent Setups (CLSD) and the General Lot-Sizing and Scheduling Problem for Multiple Production Stages (GLSPMS) do not feature in substitution options.
The scope of this book is limited to heuristics, metaheuristics, and approximate methods and algorithms as applied to planning and scheduling problems. While it is not possible to give a comprehensive treatment of this topic in one book, the aim of this work is to provide the reader with a diverse set of planning and scheduling problems and different heuristic approaches to solve them. The problems range from traditional single stage and parallel machine problems to more modern settings such as robotic cells and flexible job shop networks. Furthermore, some chapters deal with deterministic problems while some others treat stochastic versions of the problems. Unlike most of the literature that deals with planning and scheduling problems in the manufacturing and production environments, in this book the environments were extended to nontraditional applications such as spatial scheduling (optimizing space over time), runway scheduling, and surgical scheduling. The solution methods used in the different chapters of the book also spread from well-established heuristics and metaheuristics such as Genetic Algorithms and Ant Colony Optimization to more recent ones such as Meta-RaPS.
This book constitutes the refereed proceedings of the 14th International Conference on Metaheuristics, MIC 2022, held in Syracuse, Italy, in July 2022. The 48 full papers together with 17 short papers presented were carefully reviewed and selected from 72 submissions. The papers detail metaheuristic techniques. Chapter “Evaluating the Effects of Chaos in Variable Neighbourhood Search” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Authored by a team of experts, the new edition of this bestseller presents practical techniques for managing inventory and production throughout supply chains. It covers the current context of inventory and production management, replenishment systems for managing individual inventories within a firm, managing inventory in multiple locations and firms, and production management. The book presents sophisticated concepts and solutions with an eye towards today’s economy of global demand, cost-saving, and rapid cycles. It explains how to decrease working capital and how to deal with coordinating chains across boundaries.
This handbook surveys important stochastic problems and models in manufacturing system operations and their stochastic analysis. Using analytical models to design and control manufacturing systems and their operations entail critical stochastic performance analysis as well as integrated optimization models of these systems. Topics deal with the areas of facilities planning, transportation, and material handling systems, logistics and supply chain management, and integrated productivity and quality models covering: • Stochastic modeling and analysis of manufacturing systems • Design, analysis, and optimization of manufacturing systems • Facilities planning, transportation, and material handling systems analysis • Production planning, scheduling systems, management, and control • Analytical approaches to logistics and supply chain management • Integrated productivity and quality models, and their analysis • Literature surveys of issues relevant in manufacturing systems • Case studies of manufacturing system operations and analysis Today’s manufacturing system operations are becoming increasingly complex. Advanced knowledge of best practices for treating these problems is not always well known. The purpose of the book is to create a foundation for the development of stochastic models and their analysis in manufacturing system operations. Given the handbook nature of the volume, introducing basic principles, concepts, and algorithms for treating these problems and their solutions is the main intent of this handbook. Readers unfamiliar with these research areas will be able to find a research foundation for studying these problems and systems.
This book reports on cutting-edge findings concerning characterization of material behavior, material modeling and simulation, and applications in the field of manufacturing. Based on the second International Conference on Advanced Materials Mechanics & Manufacturing, A3M2018, organized by the Laboratory of Mechanics, Modeling and Manufacturing (LA2MP) of the National School of Engineers of Sfax, Tunisia, the book covers a variety of topics, such as experimental analysis of material plasticity and fatigue, numerical simulation of material behavior, and optimization of manufacturing processes, such as cutting and injection, among others. It offers a timely snapshot on current research and applications, offering a bridge to facilitate communication and collaboration between academic and industrial researchers.
Illustrated with real-life manufacturing examples, Formal Methods in Manufacturing provides state-of-the-art solutions to common problems in manufacturing systems. Assuming some knowledge of discrete event systems theory, the book first delivers a detailed introduction to the most important formalisms used for the modeling, analysis, and control of manufacturing systems (including Petri nets, automata, and max-plus algebra), explaining the advantages of each formal method. It then employs the different formalisms to solve specific problems taken from today’s industrial world, such as modeling and simulation, supervisory control (including deadlock prevention) in a distributed and/or decentralized environment, performance evaluation (including scheduling and optimization), fault diagnosis and diagnosability analysis, and reconfiguration. Containing chapters written by leading experts in their respective fields, Formal Methods in Manufacturing helps researchers and application engineers handle fundamental principles and deal with typical quality goals in the design and operation of manufacturing systems.