Download Free Heterogeneous Catalysis Conversions In Hydrocarbon Chemistry Book in PDF and EPUB Free Download. You can read online Heterogeneous Catalysis Conversions In Hydrocarbon Chemistry and write the review.

The Chemistry of Catalytic Hydrocarbon Conversions covers the various chemical aspects of catalytic conversions of hydrocarbons. This book is composed of eight chapters that include catalytic synthesis of hydrocarbons from carbon monoxide, hydrogen, and methanol. The opening chapters examine various acid- and base-catalyzed reactions, such as isomerization, polymerization, oligomerization, alkylation, catalytic cracking, reforming, hydrocracking, and hydrogenation. The subsequent chapters are devoted to specific catalytic reactions, including heterogeneous hydrogenation, dehydrogenation, aromatization, and oxidation. Other chapters describe the homogeneous catalysis by transition metal organometallic catalysts and the metathesis of unsaturated hydrocarbons. The concluding chapter deals with the synthesis of liquid hydrocarbon fuels from carbon monoxide, hydrogen, methanol, and dimethyl ether. This book is of great benefit to petroleum chemists, engineers, and researchers.
This book presents chemical and biological methods to convert carbon dioxide into various products such as methanol, ethanol, formic acid, formaldehyde, volatile organic compounds, syngas and polymers.
Natural gas, an abundant natural energy and chemical resource, is underutilized. Its inherent high energy content is compromised by its volatility. Storage and transportation problems abound for liquified natural gas. Several of the drawbacks of the utilization of natural gas, particularly its high volatility, could be offset by development of an economical and efficient process for coupling and/or further homologation of its principal component, methane. Alternatively, other conversion strategies such as partial oxidation to methanol and syngas, to oxygenates or conversion to such products via the intermediacy of chlorides should also be considered. Given the energy-intensive regimes necessary for the likely activation of methane, it was inevitable that researchers would tum to the use of heterogeneous catalysts. Heterogeneous catalysis is now a relatively mature discipline with numerous and diverse reactions being explored alongside informative studies on surface characterization, mechanism, and theory. Relationships to important related areas such as homogeneous catalysis, organometallic chemistry, and inorganic chemistry have become firmly established within this discipline. The field of methane and alkane activation is now over ten years old. The first decade of investigation produced results plagued by low yields and low-moderate conversions with well-articulated mechanistic limitations. As we begin the second decade of inquiry, novel strategies have brought increasing yields and conversions to such products as ethane, ethylene, methanol, and formaldehyde. These new approaches utilize separation of products via membranes or adsorbents. Moreover, additional mechanistic insight has been forthcoming from theoretical and computational examination as well as experimental investigation.
This book presents the catalytic conversion of carbon dioxide into various hydrocarbons and other products using photochemical, electrochemical and thermo-chemical processes. Products include formate, formic acid, alcohols, lower and higher hydrocarbons, gases such as hydrogen, carbon monoxide and syngas.
This book introduces various types of reactions to produce chemicals by the direct conversion of methane from the point of view of mechanistic and functional aspects. The chemicals produced from methane are aliphatic and aromatic hydrocarbons such as propylene and benzene, and methanol. These chemicals are created by using homogeneous catalysts, heterogeneous catalysts such as zeolites, and biocatalysts such as enzymes. Various examples of methane conversion reactions that are discussed have been chosen to illustrate how heterogeneous and homogenous catalysts and biocatalysts and/or their reaction environments control the formation of highly energetic species from methane contributing to C-C and C-O bond formation.
Heterogeneous catalysis plays a part in the production of more than 80% of all chemical products. It is therefore essential that all chemists and chemical engineers have an understanding of the fundamental principles as well as the applications of heterogeneous catalysts. This book introduces the subject, starting at a basic level, and includes sections on adsorption and surface science, catalytic kinetics, experimental methods for preparing and studying heterogeneous catalysts, as well as some aspects of the design of industrial catalytic reactors. It ends with a chapter that covers a range of examples of important catalytic processes.The book leads the student to carrying out a series of "tasks" based on searches of the internet and also on the use of web-based search tools such as Scopus or Web of Science. These tasks are generally based on the text; they can be used entirely for self-study but they can also be tailored to the requirements of a particular course by the instructor/lecturer giving the course.The author has had over 40 years of experience in catalytic research as well as in lecturing on the principles of catalysis. He was for more than 20 years the Editor of Catalysis Today. Coverage of all aspects of catalysis in carefully organised text Inclusion of material on the historical development of the subject and the personalities involved All concepts illustrated by practical examples Inclusion of a wide range of problems and solutions, case studies, and supplementary web based material which will be regularly updated Author has over 40 years research experience of almost all covered subjects Provides companion materials webiste
Heterogeneous Catalysis for Sustainable Energy Explore the state-of-the-art in heterogeneous catalysis In Heterogeneous Catalysis for Sustainable Energy, a team of distinguished researchers delivers a comprehensive and cutting-edge treatment of recent advancements in energy-related catalytic reactions and processes in the field of heterogeneous catalysis. The book includes extensive coverage of the hydrogen economy, methane activation, methanol-to-hydrocarbons, carbon dioxide conversion, and biomass conversion. The authors explore different aspects of the technology, like reaction mechanisms, catalyst synthesis, and the commercial status of the reactions. The book also includes: A thorough introduction to the hydrogen economy, including hydrogen production, the reforming of oxygen-containing chemicals, and advances in Fischer-Tropsch Synthesis Comprehensive explorations of methane activation, including steam and dry reforming of methane and methane activation over zeolite catalysts Practical discussions of alkane activation, including cracking of hydrocarbons to light olefins and catalytic dehydrogenation of light alkanes In-depth examinations of zeolite catalysis and carbon dioxide as C1 building block Perfect for catalytic, physical, and surface chemists, Heterogeneous Catalysis for Sustainable Energy also belongs in the libraries of materials scientists with an interest in energy-related reactions and processes in the field of heterogeneous catalysis.
The features of this book which will be of special interest to academic organic chemists are the introduction (Chapter 1), which presents a short course on the concepts and language of heterogeneous catalysis, covers organic reaction mechanisms of hydrogenation (Chapter 2), hydrogenolysis (Chapter 4), and oxidation (Chapter 6), a presents problems and solutions specific for running heterogeneous catalytic organic reactions in solution. These materials can supplement advanced chemistry courses. Most synthetic organic chemists use a variety of "protecting groups" which they attach to functional groups (reactive groups of atoms) while some reaction is being conducted on another part of the molecule. These protecting groups prevent reactions of the functional groups during other reactions and are removed later by a heterogeneous catalytic method called hydrogenolysis. One unique feature of this book, not found in other books on catalysis, is an exhaustive chapter (Chapter 4) on hydrogenolysis, which is dredged from the recent synthetic literature published by modern organic chemists. Academic organic chemists should find this chapter extremely useful and may wish to adopt the book as a supplement for advanced organic chemistry courses designed for seniors and for graduate students. It will also be useful for professors and their research groups engaged in synthetic organic chemistry. Many academic organic chemists are not aware of recent advances in heterogeneous enantioselective catalysis (Chapter 3) or in selective low temperature, liquid phase heterogeneous catalytic oxidations by hydrogen peroxide (Chapter 6). These specialty topics are timely and may be new to academic organic chemists and can be used to supplement their advanced courses. Several features of this book will also be of special interest to industrial chemists who are unfamiliar with heterogeneous catalysis. Many good organic chemists are hire by industry. They synthesize a new compound using standard organic synthetic techniques but are informed by their supervisor that they must convert some of their synthetic steps into heterogeneous catalytic steps. They may not have been exposed to heterogeneous catalysis and have few places to turn. This book offers them a crash course in heterogeneous catalysis as well as many examples of reactions and conditions with which they can start their search. Those industrial organic chemists already familiar with heterogeneous catalysis will find this book useful as a reference to many examples in the recent literature. They will find recent surface science discoveries correlated with heterogeneous catalysis or organic reactions and mechanistic suggestions designed to stimulate innovative nontraditional thinking about organic reactions on surfaces. Written by organic chemists for organic chemists Introduces heterogeneous catalysis concepts and language Presents a comprehensive compilation of protecting group removal procedures Covers liquid-phase hydrogenations, hydrogenolysis, and oxidations Addresses heterogeneous methods for producing pure enantiomers of chiral products Examines the emerging field of heterogenized homogeneous catalysts Mixes practical applications with mechanistic interpretations