Download Free Heterogeneous Catalysis And Fine Chemicals Iv Book in PDF and EPUB Free Download. You can read online Heterogeneous Catalysis And Fine Chemicals Iv and write the review.

After three meetings in Poitiers, France, the 4th International Symposium on Heterogeneous Catalysis and Fine Chemicals was held under the auspices of the New Swiss Chemical Society in Basel, Switzerland. Fundamental as well as applied contributions on the use of heterogeneous catalysis for the preparation of fine chemicals were presented and discussed.The program consisted of 4 plenary lectures, 28 oral contributions and around 90 posters covering a broad range of reactions and catalytic aspects. 82 of these contributions are collected in the present proceedings, grouped into the following 8 topical areas:- Industrial and engineering problems (7 contributions)- Alkylation and acylation reactions (11 contributions)- Enantio- and diastereoselective hydrogenation reactions (9 contributions)- Chemoselective hydrogenation reactions (12 contributions)- Oxidation reactions (14 contributions)- Immobilized and encapsulated complex catalysts (12 contributions)- Zeolite and clay catalysts (12 contributions)- Miscellaneous topics (5 contributions)
Nowadays, the chemical industry is under increased pressure to develop cleaner production processes and technologies. Much effort is devoted to the development of heterogeneous catalysts and their application in industrial-scale organic synthesis. This handbook concentrates on current attempts, focusing on fine chemical production. With contributions from an impressive array of international experts, this is essential reading for everyone interested in the advances in this field.
Table 1 E factors (tonnes of waste generated per tonne of product manufactured [7] Industry segment Annual product tonnage E factor 6 8 Oil refining 10 –10 Approx. 0. 1 4 6 Bulk chemicals 10 –10
A wide range of chemical products (especially fine chemicals) are important for a healthy and enjoyable modern life; therefore efficient syntheses of these materials are essential. Traditional stoichiometric processes need to be replaced by modern catalytical methods in the change to sustainable chemistry and the production of lower amounts of waste. This book summarizes the wide variety of catalytic methods that have been developed and applied on an industrial scale in recent years to fulfill this goal. The synthesis of compound classes such as pharmaceuticals, agrochemicals, flavoring, and fragrance compounds as well as food additives such as vitamins exemplify the use of these modern catalytic methods in the modern chemical industry.
The recession in the traditional heavy industries along with the development of advanced technologies in all the industrial countries has meant that the impact of heterogeneous catalysis in the synthesis of fine chemicals is becoming increasingly noticeable. The second International Symposium on Heterogeneous Catalysis and Fine Chemicals is to be seen in this perspective. Organised by the Laboratory of Catalysis in Organic Chemistry of the University of Poitiers within the framework of the International Symposia of the `Centre National de la Recherche Scientifique' (CNRS), the symposium provided an opportunity for contact between academic researchers and manufacturers, users (or potential users) of solid catalysts for fine chemical synthesis. The book gives an overall view of the problems encountered by academic and industrial researchers. A large variety of reactions are described, the emphasis being on selectivity: chemo-, regio-, stereoselectivity (even enantioselectivity) and on the change of these selectivities as a function of the characteristics of the surface sites (nature, distribution, etc.).The three themes of the symposium, hydrogenation, oxidation and acid-base catalysis were introduced in four plenary lectures and two invited communications, maintaining a balance between the industrial and the academic points of view. Some 60 research papers selected by the Scientific Committee were presented. All are reproduced in full in this proceedings volume.
The features of this book which will be of special interest to academic organic chemists are the introduction (Chapter 1), which presents a short course on the concepts and language of heterogeneous catalysis, covers organic reaction mechanisms of hydrogenation (Chapter 2), hydrogenolysis (Chapter 4), and oxidation (Chapter 6), a presents problems and solutions specific for running heterogeneous catalytic organic reactions in solution. These materials can supplement advanced chemistry courses. Most synthetic organic chemists use a variety of "protecting groups" which they attach to functional groups (reactive groups of atoms) while some reaction is being conducted on another part of the molecule. These protecting groups prevent reactions of the functional groups during other reactions and are removed later by a heterogeneous catalytic method called hydrogenolysis. One unique feature of this book, not found in other books on catalysis, is an exhaustive chapter (Chapter 4) on hydrogenolysis, which is dredged from the recent synthetic literature published by modern organic chemists. Academic organic chemists should find this chapter extremely useful and may wish to adopt the book as a supplement for advanced organic chemistry courses designed for seniors and for graduate students. It will also be useful for professors and their research groups engaged in synthetic organic chemistry. Many academic organic chemists are not aware of recent advances in heterogeneous enantioselective catalysis (Chapter 3) or in selective low temperature, liquid phase heterogeneous catalytic oxidations by hydrogen peroxide (Chapter 6). These specialty topics are timely and may be new to academic organic chemists and can be used to supplement their advanced courses. Several features of this book will also be of special interest to industrial chemists who are unfamiliar with heterogeneous catalysis. Many good organic chemists are hire by industry. They synthesize a new compound using standard organic synthetic techniques but are informed by their supervisor that they must convert some of their synthetic steps into heterogeneous catalytic steps. They may not have been exposed to heterogeneous catalysis and have few places to turn. This book offers them a crash course in heterogeneous catalysis as well as many examples of reactions and conditions with which they can start their search. Those industrial organic chemists already familiar with heterogeneous catalysis will find this book useful as a reference to many examples in the recent literature. They will find recent surface science discoveries correlated with heterogeneous catalysis or organic reactions and mechanistic suggestions designed to stimulate innovative nontraditional thinking about organic reactions on surfaces. - Written by organic chemists for organic chemists - Introduces heterogeneous catalysis concepts and language - Presents a comprehensive compilation of protecting group removal procedures - Covers liquid-phase hydrogenations, hydrogenolysis, and oxidations - Addresses heterogeneous methods for producing pure enantiomers of chiral products - Examines the emerging field of heterogenized homogeneous catalysts - Mixes practical applications with mechanistic interpretations
Reactive, but not a reactant. Heterogeneous catalysts play an unseen role in many of today's processes and products. With the increasing emphasis on sustainability in both products and processes, this handbook is the first to combine the hot topics of heterogeneous catalysis and clean technology. It focuses on the development of heterogeneous catalysts for use in clean chemical synthesis, dealing with how modern spectroscopic techniques can aid the design of catalysts for use in liquid phase reactions, their application in industrially important chemistries - including selective oxidation, hydrogenation, solid acid- and base-catalyzed processes - as well as the role of process intensification and use of renewable resources in improving the sustainability of chemical processes. With its emphasis on applications, this book is of high interest to those working in the industry.
This book examines the latest research and discovery in the use of MOFs in catalysis, highlighting the extent to which these materials have been embraced by the community.
Presents state-of-the-art knowledge of heterogeneous catalysts including new applications in energy and environmental fields This book focuses on emerging techniques in heterogeneous catalysis, from new methodology for catalysts design and synthesis, surface studies and operando spectroscopies, ab initio techniques, to critical catalytic systems as relevant to energy and the environment. It provides the vision of addressing the foreseeable knowledge gap unfilled by classical knowledge in the field. Heterogeneous Catalysts: Advanced Design, Characterization and Applications begins with an overview on the evolution in catalysts synthesis and introduces readers to facets engineering on catalysts; electrochemical synthesis of nanostructured catalytic thin films; and bandgap engineering of semiconductor photocatalysts. Next, it examines how we are gaining a more precise understanding of catalytic events and materials under working conditions. It covers bridging pressure gap in surface catalytic studies; tomography in catalysts design; and resolving catalyst performance at nanoscale via fluorescence microscopy. Quantum approaches to predicting molecular reactions on catalytic surfaces follows that, along with chapters on Density Functional Theory in heterogeneous catalysis; first principles simulation of electrified interfaces in electrochemistry; and high-throughput computational design of novel catalytic materials. The book also discusses embracing the energy and environmental challenges of the 21st century through heterogeneous catalysis and much more. Presents recent developments in heterogeneous catalysis with emphasis on new fundamentals and emerging techniques Offers a comprehensive look at the important aspects of heterogeneous catalysis Provides an applications-oriented, bottoms-up approach to a high-interest subject that plays a vital role in industry and is widely applied in areas related to energy and environment Heterogeneous Catalysts: Advanced Design, Characterization and Applications is an important book for catalytic chemists, materials scientists, surface chemists, physical chemists, inorganic chemists, chemical engineers, and other professionals working in the chemical industry.
Now in it's 3rd Edition, Industrial Catalysis offers all relevant information on catalytic processes in industry, including many recent examples. Perfectly suited for self-study, it is the ideal companion for scientists who want to get into the field or refresh existing knowledge. The updated edition covers the full range of industrial aspects, from catalyst development and testing to process examples and catalyst recycling. The book is characterized by its practical relevance, expressed by a selection of over 40 examples of catalytic processes in industry. In addition, new chapters on catalytic processes with renewable materials and polymerization catalysis have been included. Existing chapters have been carefully revised and supported by new subchapters, for example, on metathesis reactions, refinery processes, petrochemistry and new reactor concepts. "I found the book accesible, readable and interesting - both as a refresher and as an introduction to new topics - and a convenient first reference on current industrial catalytic practise and processes." Excerpt from a book review for the second edition by P. C. H. Mitchell, Applied Organometallic Chemistry (2007)