Download Free Heterofertilization In Grain Sorghum Book in PDF and EPUB Free Download. You can read online Heterofertilization In Grain Sorghum and write the review.

During the past decade, there has been tremendous progress in maize biotechnology. This volume provides an overview of our current knowledge of maize molecular genetics, how it is being used to improve the crop, and future possibilities for crop enhancement. Several chapters deal with genetically engineered traits that are currently, or soon will be, in commercial production. Technical approaches for introducing novel genes into the maize genome, the regeneration of plants from transformed cells, and the creation of transgenic lines for field production are covered. Further, the authors describe how molecular genetic techniques are being used to identify genes and characterize their function, and how these procedures are utilized to develop elite maize germplasm. Moreover, molecular biology and physiological studies of corn as a basis for the improvement of its nutritional and food-making properties are included. Finally, the growing use of corn as biomass for energy production is discussed.
The production of doubled haploids has become a necessary tool in advanced plant breeding institutes and commercial companies for breeding many crop species. However, the development of new, more efficient and cheaper large scale production protocols has meant that doubled haploids are also recently being applied in less advanced breeding programmes. This Manual was prepared to stimulate the wider use of this technology for speeding and opening up new breeding possibilities for many crops including some woody tree species. Since the construction of genetic maps using molecular markers requires the development of segregating doubled haploid populations in numerous crop species, we hope that this Manual will also help molecular biologists in establishing such mapping populations. For many years, both the Food and Agriculture Organization of the United Nations (FAO) and the International Atomic Energy Agency (IAEA) have supported and coordinated research that focuses on development of more efficient doubled haploid production methods and their applications in breeding of new varieties and basic research through their Plant Breeding and Genetics Section of the Joint F AO/IAEA Division of Nuclear Techniques in Food and Agriculture. The first F AO/IAEA scientific network (Coordinated Research Programme - CRP) dealing with doubled haploids was initiated by the Plant Breeding and Genetics Section in 1986.
Includes abstracts of the annual meetings of the American Society of Agronomy; Soil Science Society of America; Crop Science Society of America ( - of its Agronomic Education Division).
Vols. 1-49 are Proceedings of the 1st-57th annual meetings.
In Recognition of the Forgotten Generation D. L. MULCAHyl Pollen was long believed to serve primarily a single function, that of delivering male gametes to the egge A secondary and generally overlooked value of pollen is that it serves to block the transmission of many defective alleles and gene combinations into the next generation. This latter function comes about simply because pollen tubes carrying defective haploid genotypes frequently fail to complete growth through the entire length of the style. However, the beneficial consequences of this pollen selection are diluted by the fact that the same deleterious genotypes are often transmitted through the egg at strictly mendelian frequencies (Khush, 1973). Gene expression in the pollen might thus at least appear to be a phenomenon of trivial consequence. Indeed, Heslop-Harrison (1979) rightly termed the gametophytic portion of the angiosperm life cycle, the "forgotten generation." This neglect, however, came about despite subtle but constant indications that pollen is the site of intense gene activity and selection. For example, Mok and Peloquin (1975) demonstrated that relatively heterozygous diploid pollen shows heterotic characteristics whereas relatively homozygous diploid pOllen does not. This was proof positive that genes are expressed (that is, transcribed and translated) in the pollen. 1 Department of Botany, University of Massachusetts Amherst, MA 01003, USA viii However, the implications for pollen biology of even this recent and well known study were not widely recognized.