Download Free Heterocyclic Organic Corrosion Inhibitors Book in PDF and EPUB Free Download. You can read online Heterocyclic Organic Corrosion Inhibitors and write the review.

Heterocyclic Organic Corrosion Inhibitors: Principles and Applications aims to comprehend the synthesis and application of organic heterocyclic compounds as corrosion inhibitors in various corrosive environments. Considering the high importance of corrosion inhibitor development for different industries, the book provides the fundamentals and most recent advancements in this field. The book is an indispensable reference tool for industrialists and academicians working in the field of corrosion protection. - Provides a systematic overview of fundamentals and current advancements - Acts as a primary reference for beginner researchers in this arena - Presents a handy reference tool to different chemical industries - Covers fundamentals, industrial applications and most recent advancements in this area
Provides comprehensive coverage of organic corrosion inhibitors used in modern industrial platforms, including current developments in the design of promising classes of organic corrosion inhibitors Corrosion is the cause of significant economic and safety-related problems that span across industries and applications, including production and processing operations, transportation and public utilities infrastructure, and oil and gas exploration. The use of organic corrosion inhibitors is a simple and cost-effective method for protecting processes, machinery, and materials while remaining environmentally acceptable. Organic Corrosion Inhibitors: Synthesis, Characterization, Mechanism, and Applications provides up-to-date coverage of all aspects of organic corrosion inhibitors, including their fundamental characteristics, synthesis, characterization, inhibition mechanism, and industrial applications. Divided into five sections, the text first covers the basics of corrosion and prevention, experimental and computational testing, and the differences between organic and inorganic corrosion inhibitors. The next section describes various heterocyclic and non-heterocyclic corrosion inhibitors, followed by discussion of the corrosion inhibition characteristics of carbohydrates, amino acids, and other organic green corrosion inhibitors. The final two sections examine the corrosion inhibition properties of carbon nanotubes and graphene oxide, and review the application of natural and synthetic polymers as corrosion inhibitors. Featuring contributions by leading researchers and scientists from academia and industry, this authoritative volume: Discusses the latest developments and issues in the area of corrosion inhibition, including manufacturing challenges and new industrial applications Explores the development and implementation of environmentally-friendly alternatives to traditional toxic corrosion inhibitors Covers both established and emerging classes of corrosion inhibitors as well as future research directions Describes the anticorrosive mechanisms and effects of acyclic, cyclic, natural, and synthetic corrosion inhibitors Offering an interdisciplinary approach to the subject, Organic Corrosion Inhibitors: Synthesis, Characterization, Mechanism, and Applications is essential reading for chemists, chemical engineers, researchers, industry professionals, and advanced students working in fields such as corrosion inhibitors, corrosion engineering, materials science, and applied chemistry.
Handbook of Science and Engineering of Green Corrosion Inhibitors: Modern Theory, Fundamentals and Practical Applications presents developments in green corrosion inhibitors and current applications. The book provides an overview of green corrosion inhibitors such as plant extracts, chemical medicines, natural polymers, synthetic green compounds, carbohydrates, amino acids and oleochemicals that can cost-effectively minimize corrosive damage. The book handles several compounds used as anticorrosive materials for different metals and alloys in a versatile corrosive environment. Sections address the fundamental characteristics of green corrosion inhibition and deal with the economic impact of corrosion and forms of corrosion, while also assessing and classifying corrosion inhibitors. The book covers a broad range of applications in green corrosion inhibition and concludes with new emerging trends in corrosion protection such as high temperature corrosion and its protection and nanomaterials as corrosion inhibitors. - Provides an overview of environmentally sustainable (green) corrosion inhibitors utilized in modern industrial platforms - Evaluates corrosion inhibitors as prime options for sustainable and transformational opportunities - Serves as a valuable reference for scientists and engineers who are searching modern design for corrosion inhibitors - Covers both synthetic and natural environmentally-friendly corrosion inhibitors
Environmentally Sustainable Corrosion Inhibitors: Fundamentals and Industrial Applications covers the latest research developments in environmentally friendly, sustainable corrosion inhibitors. The book addresses the fundamental characteristics, synthesis, characterization and mechanisms of corrosion inhibitors. In addition, it presents a chronological overview of the growth of the field, with numerous examples of its broad-ranging industrial applications in a.o. food, the environment, electronics, and the oil and gas industries. The book concludes with discussions about commercialization and economics. This is an indispensable reference for chemical engineers and chemists working in R&D and academia who want to learn more about environmentally-friendly, sustainable corrosion inhibitors systems. - Explains how to use environmentally-friendly, sustainable corrosion inhibitors in modern industry and manufacturing - Promotes corrosion inhibitors as a prime option for sustainable and transformational opportunities - Provides up-to-date reference material, including websites of interest and information on the latest research
Handbook of Heterocyclic Corrosion Inhibitors presents a comprehensive overview of corrosion inhibition using heterocyclic compounds. It covers numerous, emerging heterocyclic compound-based industrial corrosion inhibitors that are oriented toward minimizing corrosive damages and prevention methods. Describing the fundamentals of heterocycles, corrosion, and corrosion inhibition, the book considers the potential of different series of N-heterocycles, such as acridine and acridone-based, carbazole-based, imidazole and imidazoline-based, indole and indoline-based, melamine-based, etc. It presents the corrosion inhibition potential of oxygen- and sulfur-based heterocycles compounds. The book also explores issues with corrosion as a result of improper design with descaling, acidification, refinery, and transport processes. The book will be of interest to researchers and graduate students studying corrosion science, heterocyclic chemistry, material science and engineering, energy, chemistry, and colloid science. It will also be a valuable reference for corrosion scientists and R&D engineers working in industrial corrosion and industrial-based corrosion protection systems.
Provides comprehensive coverage of corrosion inhibitors in the oil and gas industries Considering the high importance of corrosion inhibitor development for the oil and gas sectors, this book provides a thorough overview of the most recent advancements in this field. It systematically addresses corrosion inhibitors for various applications in the oil and gas value chain, as well as the fundamentals of corrosion inhibition and interference of inhibitors with co-additives. Corrosion Inhibitors in the Oil and Gas Industries is presented in three parts. The first part on Fundamentals and Approaches focuses on principles and processes in the oil and gas industry, the types of corrosion encountered and their control methods, environmental factors affecting inhibition, material selection strategies, and economic aspects of corrosion. The second part on Choice of Inhibitors examines corrosion inhibitors for acidizing processes, inhibitors for sweet and sour corrosion, inhibitors in refinery operations, high-temperature corrosion inhibitors, inhibitors for challenging corrosive environments, inhibitors for microbiologically influenced corrosion, polymeric inhibitors, vapor phase inhibitors, and smart controlled release inhibitor systems. The last part on Interaction with Co-additives looks at industrial co-additives and their interference with corrosion inhibitors such as antiscalants, hydrate inhibitors, and sulfide scavengers. -Presents a well-structured and systematic overview of the fundamentals and factors affecting corrosion -Acts as a handy reference tool for scientists and engineers working with corrosion inhibitors for the oil and gas industries -Collectively presents all the information available on the development and application of corrosion inhibitors for the oil and gas industries -Offers a unique and specific focus on the oil and gas industries Corrosion Inhibitors in the Oil and Gas Industries is an excellent resource for scientists in industry as well as in academia working in the field of corrosion protection for the oil and gas sectors, and will appeal to materials scientists, electrochemists, chemists, and chemical engineers.
A book to cover developments in corrosion inhibitors is long overdue. This has been addressed by Dr Sastri in a book which presents fundamental aspects of corrosion inhibition, historical developments and the industrial applications of inhibitors. The book deals with the electrochemical principles and chemical aspects of corrosion inhibition, such as stability of metal complexes, the Hammett equation, hard and soft acid and base principle, quantum chemical aspects and Hansch' s model and also with the various surface analysis techniques, e.g. XPS, Auger, SIMS and Raman spectroscopy, that are used in industry for corrosion inhibition. The applications of corrosion inhibition are wide ranging. Examples given in this book include: oil and gas wells, petrochemical plants, steel reinforced cement, water cooling systems, and many more. The final chapters discuss economic and environmental considerations which are now of prime importance. The book is written for researchers in academia and industry, practicing corrosion engineers and students of materials science, engineering and applied chemistry.
Corrosion Protection at the Nanoscale explores fundamental concepts on how metals can be protected at the nanoscale by using both nanomaterials-based solutions, including nanoalloys, noninhibitors and nanocoatings. It is an important reference resource for both materials scientists and engineers wanting to find ways to create an efficient corrosion prevention strategy. Nanostructure materials have been widely used in many products, such as print electronics, contact, interconnection, implant, nanosensors and display units to lessen the impact of corrosion. Traditional methods for protection of metals include various techniques, such as coatings, inhibitors, electrochemical methods (anodic and cathodic protections), metallurgical design are covered in this book. Nanomaterials-based protective methods can offer many advantages over their traditional counterparts, such as protection for early-stage, higher corrosion resistance, better corrosion control. This book also outlines these advantages and discusses the challenges of implementing nanomaterials as corrosion protection agents on a wide scale.
The interaction of metal with its environment that results in its chemical alteration is called metallic corrosion. According to the literature, corrosion is classified to two types: uniform and localized corrosion. Intervention in either in the alloy environment or in the alloy structure can provide the corrosion protection of metallic materials. Furthermore, the interference in the metal alloy environment can be conducted with the utilization of cathodic or anodic protection via the corresponding inhibitors. Therefore, the most common categorization is cathodic, anodic, and mixed-type inhibitors, taking into account which half-reaction they suppress during corrosion phenomena. The majority of the organic inhibitors are of mixed type and perform through chemisorption. In order to update the field of the corrosion protection of metal and metal alloys with the use of organic inhibitors, a Special Issue entitled "Advances in Organic Corrosion Inhibitors and Protective Coatings" is introduced. This book gathers and reviews a collection of ten contributions (nine articles and one review), from authors from Europe, Asia, and Africa, that were accepted for publication in this Special Issue of Applied Sciences.
Corrosion affects every industry in which metal is involved, from manufacturing machinery to transport pipelines, and it is estimated to cost the global economy trillions of dollars per year. Many of the traditional methods for inhibiting corrosion are highly toxic (such as hexavalent chromium) or do not degrade readily in the environment (such as Benzotriazole) meaning they pose a risk to human and environmental health. Much recent work in the area has gone into searching for greener alternatives that will be both safe and effective. Beginning with a look at the fundamentals of corrosion inhibition and an explanation of the concepts of green chemistry, this book discusses various types of chemical that have been tested for their potential as greener corrosion inhibitors with reference to industrial applications. Green Corrosion Inhibition is a valuable reference for chemists and chemical engineers working in both research and design and academia who want to learn more about green corrosion inhibitors, their synthesis, design, and industrial scale applications.