Download Free Hematopoietic Differentiation From Human Pluripotent Stem Cells Of Different Origins Book in PDF and EPUB Free Download. You can read online Hematopoietic Differentiation From Human Pluripotent Stem Cells Of Different Origins and write the review.

This book features the most cutting-edge work from the world’s leading laboratories in this field and provides practical methods for differentiating pluripotent stem cells into hematopoietic lineages in the blood system. Pluripotent stem cells have attracted major interest from a fast-growing and multidisciplinary community of researchers who are developing new techniques for the derivation and differentiation of these cells into specific cell lineages. These direct differentiation methods hold great promise for the translational applications of these cells. This book is an essential reference work for researchers at all levels in the fields of hematology and stem cell biology, as well as clinical practitioners in regenerative medicine.
This book collects articles on the biology of hematopoietic stem cells during embryonic development, reporting on fly, fish, avian and mammalian models. The text invites a comparative overview of hematopoietic stem cell generation in the different classes, emphasizing conserved trends in development. The book reviews current knowledge on human hematopoietic development and discusses recent breakthroughs of relevance to both researchers and clinicians.
This volume covers all aspects of embryonic stem cell differentiation, including mouse embryonic stem cells, mouse embryonic germ cells, monkey and human embryonic stem cells, and gene discovery.* Early commitment steps and generation of chimeric mice* Differentiation to mesoderm derivatives* Gene discovery by manipulation of mouse embryonic stem cells
Human pluripotent stem cells (hPSCs) are advantageous cell sources for disease remodeling and drug screening, particularly for regenerative medicine. State-of-the-art updates have highlighted the feasibility of hPSCs for the large-scale preparation of diverse kinds of stem cells and functional cells, such as mesenchymal stem/stromal cells (MSCs), hematopoietic stem cells (HSCs), neural stem cells (NSCs), natural killer (NK) cells, and chimeric antigen receptor-transduced T cells (CAR-Ts). With the aid of preclinical investigations and clinical practice, hPSCs have been recognized as promising therapeutic cell sources with excellent properties for treating a variety of refractory and recurrent diseases. This book provides a comprehensive overview of advances in pluripotent stem cells.
The ultimate clinical implementation of embryonic stem cells will require methods and protocols to turn these unspecialized cells into the fully functioning cell types found in a wide variety of tissues and organs. In order to achieve this, it is necessary to clearly understand the signals and cues that direct embryonic stem cell differentiation. This book provides a snapshot of current research on the differentiation of embryonic stem cells to a wide variety of cell types, including neural, cardiac, endothelial, osteogenic, and hepatic cells. In addition, induced pluripotent stem cells and other pluripotent stem cell sources are described. The book will serve as a valuable resource for engineers, scientists, and clinicians as well as students in a wide range of disciplines.
The power of stem cells for tissue development, regeneration, and renewal has been well known by embryologists and developmental biologists for many years. Those presently active in research in the stem cell field owe much to previous work by embryologists and cancer researchers for their insights into what stem cells can do. In the last 4- 5 years, the rapid expansion of the concept of adult tissue stem cells as pluripotent progenitors for various tissues has led to an even greater appreciation of the power of stem cells. The demonstration that both embryonic and adult tissue stem cells have the ability to produce progenitor cells for tissue renewal has opened vast possibilities for treatment of congenital deficiency diseases as well as for regeneration of damaged tissues. Older concepts of determination leading to loss of potential during differentiation of adult tissues are being replaced by newer ideas that cells with multiple potential exist in different forms in various adult organs and that cells thought to be restricted to differentiation to one cell type may be able to "transdifferentiate" into other tissue cell types. Thus, the concept of "embryonic rests" in adult tissues, hypothesized to be the cellular origin of cancer by Durante and Conheim in the 1870s, now can be expanded to include survival of pluripotential embryonic-like stem cells in adult tissues.
Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell researchâ€"specifically embryonic stem cell researchâ€"into the political crosshairs. President Bush's watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.
Stem cell science has the potential to impact human reproductive medicine significantly - cutting edge technologies allow the production and regeneration of viable gametes from human stem cells offering potential to preciously infertile patients. Written by leading experts in the field Stem Cells in Reproductive Medicine brings together chapters on the genetics and epigenetics of both the male and female gametes as well as advice on the production and regeneration of gene cells in men and women, trophoblasts and endometrium from human embryonic and adult stem cells. Although focussing mainly on the practical elements of the use of stem cells in reproductive medicine, the book also contains a section on new developments in stem cell research. The book is essential reading for reproductive medicine clinicians, gynecologists and embryologists who want to keep abreast of practical developments in this rapidly developing field.