Download Free Heavy Water Production Book in PDF and EPUB Free Download. You can read online Heavy Water Production and write the review.

Heavy water (deuterium oxide) played a sinister role in the race for nuclear energy during the World War II. It was a key factor in Germany's bid to harness atomic energy primarily as a source of electric power; its acute shortage was a factor in Japan's decision not to pursue seriously nuclear weaponry; its very existence was a nagging thorn in the side of the Allied powers. Books and films have dwelt on the Allies' efforts to deny the Germans heavy water by military means; however, a history of heavy water has yet to be written. Filling this gap, Heavy Water and the Wartime Race for Nuclear Energy concentrates on the circumstances whereby Norway became the preeminent producer of heavy water and on the scientific role the rare isotope of hydrogen played in the wartime efforts by the Axis and Allied powers alike. Instead of a purely technical treatise on heavy water, the book describes the social history of the subject. The book covers the discovery and early uses of deuterium before World War II and its large-scale production by Norsk Hydro in Norway, especially under German control. It also discusses the French-German race for the Norwegian heavy-water stocks in 1940 and heavy water's importance for the subsequent German uranium project, including the Allied sabotage and bombing of the Norwegian plants, as well as its lesser role in Allied projects, especially in the United States and Canada. The book concludes with an overall assessment of the importance and the perceived importance of heavy water for the German program, which alone staked everything on heavy water in its quest for a nuclear chain reaction.
Pressurized Heavy Water Reactors: Atucha-II, the eighth volume in the JSME Series on Thermal and Nuclear Power Generation, provides a comprehensive and complete review of a single type of reactor in a very accessible and practical way. The book presents a close analysis of the Atucha reactor, covering reactor physics, aging management of major components, and the role of codes in PHWR and Nuclear Regulation and Licensing. Including contemporary capabilities and challenges of nuclear technology, the book offers solutions and advice on common problems faced, guiding the reader through safe and approved processes that will help them reach suitable solutions. Professionals involved in lifecycle assessments and researchers interested in the development and improvement of nuclear energy technologies will gain a deep understanding of PHWR nuclear reactor physics, design and licensing. - A comprehensive reference on the latest research on Atucha Pressurized Heavy Water Reactors and their impact on sustainability goals - Analyzes The Atucha-2 BEPU and LBLOCA - Considers the licensing of Atucha-2, its physics and aging management of major components
Originally published in 1983, this book presents both the technical and political information necessary to evaluate the emerging threat to world security posed by recent advances in uranium enrichment technology. Uranium enrichment has played a relatively quiet but important role in the history of efforts by a number of nations to acquire nuclear weapons and by a number of others to prevent the proliferation of nuclear weapons. For many years the uranium enrichment industry was dominated by a single method, gaseous diffusion, which was technically complex, extremely capital-intensive, and highly inefficient in its use of energy. As long as this remained true, only the richest and most technically advanced nations could afford to pursue the enrichment route to weapon acquisition. But during the 1970s this situation changed dramatically. Several new and far more accessible enrichment techniques were developed, stimulated largely by the anticipation of a rapidly growing demand for enrichment services by the world-wide nuclear power industry. This proliferation of new techniques, coupled with the subsequent contraction of the commercial market for enriched uranium, has created a situation in which uranium enrichment technology might well become the most important contributor to further nuclear weapon proliferation. Some of the issues addressed in this book are: A technical analysis of the most important enrichment techniques in a form that is relevant to analysis of proliferation risks; A detailed projection of the world demand for uranium enrichment services; A summary and critique of present institutional non-proliferation arrangements in the world enrichment industry, and An identification of the states most likely to pursue the enrichment route to acquisition of nuclear weapons.
The scope of thermodynamics. Definitions; the concept of equilibrium. Conventions and mathematical methods. Solutions. The first law of thermodynamics and the concept of energy. The fugacity. Application of the second law to solutions. The perfect solution. The laws of the dilute solution. Systems involving variables other than pressure, temperature and composition. A useful function, called the activity, and its application to solutions. Change of activity with the temperature, and the calculation of activity from freezing points. The standard change of free energy; the equilibrium constant. Solutions of electrolytes. The activity of strong electrolytes. The activity of electrolytes from freezing point data, and tables of activity coefficients. Activity coefficient in mixed electrolytes; the principle of the ionic strength; the activity of individual ions. The galvanic cell. Single potentials; standard electrode potentials of the elements. The third law of thermodynamics. The entropy of monatomic gases and a table of atomic entropies. Introduction to systematic free energy calculations: the free energy of elementary hydrogen and metallic hydrides. Oxygen and its compouns with hydrogen and with some metals. Chlorine and its compouns. Bromine and its compounds. Iodine and its compounds. Nitrogen compounds. Carbon and some of its compounds. Compounds of carbon and nitrogen. Table of free energies; and examples illustrating its use. Conversion table for mol fractions, mol ratios and molities. Some useful numerical factors. Coefficients employed in converting activity, equilibrium constant and free energy from one temperature to another. Publications by the authrs, pertaining to thermodynamics.
Pressurized Heavy Water Reactors: CANDU, the seventh volume in the JSME Series on Thermal and Nuclear Power Generation series, provides a comprehensive and complete review of a single type of reactor in a very accessible and practical way. The book presents the full lifecycle, from design and manufacturing to operation and maintenance, also covering fitness-for-service and long-term operation. It does not relate to any specific vendor-based technology, but rather provides a broad overview of the latest technologies from a variety of active locations which will be of great value to countries invested in developing their own nuclear programs. Including contemporary capabilities and challenges of nuclear technology, the book offers practical solutions to common problems faced, along with the safe and approved processes to reach suitable solutions. Professionals involved in nuclear power plant lifecycle assessment and researchers interested in the development and improvement of nuclear energy technologies will gain a deep understanding of PHWR nuclear reactor physics, chemistry and thermal-hydraulic properties. Provides a complete reference dedicated to the latest research on Pressurized Heavy Water Reactors and their economic and environmental benefits Goes beyond CANDU reactors to analyze the popular German and Indian designs, as well as plant design in Korea, Romania, China and Argentina Spans all phases of the nuclear power plant lifecycle, from design, manufacturing, operation, maintenance and long-term operation
Plant life management (PLiM) is a methodology focussed on the safety-first management of nuclear power plants over their entire lifetime. It incorporates and builds upon the usual periodic safety reviews and licence renewals as part of an overall framework designed to assist plant operators and regulators in assessing the operating conditions of a nuclear power plant, and establishing the technical and economic requirements for safe, long-term operation.Understanding and mitigating ageing in nuclear power plants critically reviews the fundamental ageing-degradation mechanisms of materials used in nuclear power plant structures, systems and components (SSC), along with their relevant analysis and mitigation paths, as well as reactor-type specific PLiM practices. Obsolescence and other less obvious ageing-related aspects in nuclear power plant operation are also examined in depth.Part one introduces the reader to the role of nuclear power in the global energy mix, and the importance and relevance of plant life management for the safety regulation and economics of nuclear power plants. Key ageing degradation mechanisms and their effects in nuclear power plant systems, structures and components are reviewed in part two, along with routes taken to characterise and analyse the ageing of materials and to mitigate or eliminate ageing degradation effects. Part three reviews analysis, monitoring and modelling techniques applicable to the study of nuclear power plant materials, as well as the application of advanced systems, structures and components in nuclear power plants. Finally, Part IV reviews the particular ageing degradation issues, plant designs, and application of plant life management (PLiM) practices in a range of commercial nuclear reactor types.With its distinguished international team of contributors, Understanding and mitigating ageing in nuclear power plants is a standard reference for all nuclear plant designers, operators, and nuclear safety and materials professionals and researchers. - Introduces the reader to the role of nuclear power in the global energy mix - Reviews the fundamental ageing-degradation mechanisms of materials used in nuclear power plant structures, systems and components (SSC) - Examines topics including elimination of ageing effects, plant design, and the application of plant life management (PLiM) practices in a range of commercial nuclear reactor types