Download Free Heavy Tails And Copulas Topics In Dependence Modelling In Economics And Finance Book in PDF and EPUB Free Download. You can read online Heavy Tails And Copulas Topics In Dependence Modelling In Economics And Finance and write the review.

This book offers a unified approach to the study of crises, large fluctuations, dependence and contagion effects in economics and finance. It covers important topics in statistical modeling and estimation, which combine the notions of copulas and heavy tails -- two particularly valuable tools of today's research in economics, finance, econometrics and other fields -- in order to provide a new way of thinking about such vital problems as diversification of risk and propagation of crises through financial markets due to contagion phenomena, among others. The aim is to arm today's economists with a toolbox suited for analyzing multivariate data with many outliers and with arbitrary dependence patterns. The methods and topics discussed and used in the book include, in particular, majorization theory, heavy-tailed distributions and copula functions -- all applied to study robustness of economic, financial and statistical models, and estimation methods to heavy tails and dependence.
'Overall, the book is highly technical, including full mathematical proofs of the results stated. Potential readers are post-graduate students or researchers in Quantitative Risk Management willing to have a manual with the state-of-the-art on portfolio diversification and risk aggregation with heavy tails, including the fundamental theorems as well as collateral (but most useful) results on majorization and copula theory.'Quantitative Finance This book offers a unified approach to the study of crises, large fluctuations, dependence and contagion effects in economics and finance. It covers important topics in statistical modeling and estimation, which combine the notions of copulas and heavy tails — two particularly valuable tools of today's research in economics, finance, econometrics and other fields — in order to provide a new way of thinking about such vital problems as diversification of risk and propagation of crises through financial markets due to contagion phenomena, among others. The aim is to arm today's economists with a toolbox suited for analyzing multivariate data with many outliers and with arbitrary dependence patterns. The methods and topics discussed and used in the book include, in particular, majorization theory, heavy-tailed distributions and copula functions — all applied to study robustness of economic, financial and statistical models, and estimation methods to heavy tails and dependence.
This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.
This book is an easy-to-understand guide to modeling productivity and efficiency using modern statistical tools. It introduces readers to the fundamentals of stochastic frontier analysis (SFA) and gradually takes them to the forefront of academic research in this area, examining the latest concepts and methods related to the use of copulas in SFA. Following a comprehensive review of classic methodology, Professor Artem Prokhorov covers topics in panel data modeling, in endogeneity in SFA, in joint modeling of technical and allocative inefficiency, and in optimal and robust prediction of inefficiency scores. This is done using copulas to capture various kinds of statistical dependence that have been previously ignored when modeling production. The classic and advanced topics are illustrated using practical examples and codes written in modern programming languages. As an important example, the book spells out the case where both the values of output and the ratio of inputs used in production are optimized simultaneously. Such simultaneity, if ignored, leads to biased estimates of productivity and returns-to-scale and may understate inefficiency. The book offers a useful reference for those interested in the newest robust methods of business analytics in the area of productivity and efficiency, with implications for strategy, budgeting, resourcing and benchmarking of firms, industries and production units more generally.
Inequalities and Extremal Problems in Probability and Statistics: Selected Topics presents various kinds of useful inequalities that are applicable in many areas of mathematics, the sciences, and engineering. The book enables the reader to grasp the importance of inequalities and how they relate to probability and statistics. This will be an extremely useful book for researchers and graduate students in probability, statistics, and econometrics, as well as specialists working across sciences, engineering, financial mathematics, insurance, and mathematical modeling of large risks. - Teaches users how to understand useful inequalities - Applicable across mathematics, sciences, and engineering - Presented by a team of leading experts
Volumes 45a and 45b of Advances in Econometrics honor Professor Joon Y. Park, who has made numerous and substantive contributions to the field of econometrics over a career spanning four decades since the 1980s and counting.
This book focuses on general frameworks for modeling heavy-tailed distributions in economics, finance, econometrics, statistics, risk management and insurance. A central theme is that of (non-)robustness, i.e., the fact that the presence of heavy tails can either reinforce or reverse the implications of a number of models in these fields, depending on the degree of heavy-tailed ness. These results motivate the development and applications of robust inference approaches under heavy tails, heterogeneity and dependence in observations. Several recently developed robust inference approaches are discussed and illustrated, together with applications.
A comprehensive and timely edition on an emerging new trend in time series Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH sets a strong foundation, in terms of distribution theory, for the linear model (regression and ANOVA), univariate time series analysis (ARMAX and GARCH), and some multivariate models associated primarily with modeling financial asset returns (copula-based structures and the discrete mixed normal and Laplace). It builds on the author's previous book, Fundamental Statistical Inference: A Computational Approach, which introduced the major concepts of statistical inference. Attention is explicitly paid to application and numeric computation, with examples of Matlab code throughout. The code offers a framework for discussion and illustration of numerics, and shows the mapping from theory to computation. The topic of time series analysis is on firm footing, with numerous textbooks and research journals dedicated to it. With respect to the subject/technology, many chapters in Linear Models and Time-Series Analysis cover firmly entrenched topics (regression and ARMA). Several others are dedicated to very modern methods, as used in empirical finance, asset pricing, risk management, and portfolio optimization, in order to address the severe change in performance of many pension funds, and changes in how fund managers work. Covers traditional time series analysis with new guidelines Provides access to cutting edge topics that are at the forefront of financial econometrics and industry Includes latest developments and topics such as financial returns data, notably also in a multivariate context Written by a leading expert in time series analysis Extensively classroom tested Includes a tutorial on SAS Supplemented with a companion website containing numerous Matlab programs Solutions to most exercises are provided in the book Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH is suitable for advanced masters students in statistics and quantitative finance, as well as doctoral students in economics and finance. It is also useful for quantitative financial practitioners in large financial institutions and smaller finance outlets.
The Handbooks in Finance are intended to be a definitive source for comprehensive and accessible information in the field of finance. Each individual volume in the series should present an accurate self-contained survey of a sub-field of finance, suitable for use by finance and economics professors and lecturers, professional researchers, graduate students and as a teaching supplement. The goal is to have a broad group of outstanding volumes in various areas of finance. The Handbook of Heavy Tailed Distributions in Finance is the first handbook to be published in this series.This volume presents current research focusing on heavy tailed distributions in finance. The contributions cover methodological issues, i.e., probabilistic, statistical and econometric modelling under non- Gaussian assumptions, as well as the applications of the stable and other non -Gaussian models in finance and risk management.
The study of heavy-tailed distributions allows researchers to represent phenomena that occasionally exhibit very large deviations from the mean. The dynamics underlying these phenomena is an interesting theoretical subject, but the study of their statistical properties is in itself a very useful endeavor from the point of view of managing assets and controlling risk. In this book, the authors are primarily concerned with the statistical properties of heavy-tailed distributions and with the processes that exhibit jumps. A detailed overview with a Matlab implementation of heavy-tailed models applied in asset management and risk managements is presented. The book is not intended as a theoretical treatise on probability or statistics, but as a tool to understand the main concepts regarding heavy-tailed random variables and processes as applied to real-world applications in finance. Accordingly, the authors review approaches and methodologies whose realization will be useful for developing new methods for forecasting of financial variables where extreme events are not treated as anomalies, but as intrinsic parts of the economic process.