Download Free Heavy Neutral Lepton Decay Searches At The Na62 Experiment At Cern Book in PDF and EPUB Free Download. You can read online Heavy Neutral Lepton Decay Searches At The Na62 Experiment At Cern and write the review.

Presenting the proceedings of FPCP 2018, this book reviews the status quo of flavor physics and discusses the latest findings in this exciting area. Flavor physics has been instrumental in the formulation and understanding of the standard model, and it is possible that the direction of new physics will be significantly influenced by flavor sector, also known as the intensity frontier, making it possible to indirectly test the existence of new physics up to a very high scale, beyond that of the energy frontier scale accessible at the LHC. The book is intended for academics around the globe involved in particle physics research, professionals associated with the related technologies and those who are interested in learning about the future of physics and its prospects and directions.
Our Universe is made of a dozen fundamental building blocks. Among these, neutrinos are the most mysterious - but they are the second most abundant particles in the Universe. This book provides detailed discussions of how to describe neutrinos, their basic properties, and the roles they play in nature.
Since the discovery of neutrino oscillations neutrino physics has become an interesting field of research in physics. They imply that neutrino must have a small mass and that the neutrinos, coupled to the charged leptons, are mixtures of the mass eigenstates, analogous to the flavor mixing of the quarks. The mixing angles for the quarks are small, but for the leptons two of the mixing angles are large. The masses of the three neutrinos must be very small, less than 1 eV, but from the oscillation experiments we only know the mass differences -- the absolute masses are still unknown. Also we do not know, if the masses of the neutrinos are Dirac masses, as the masses of the charged leptons and of the quarks, or whether they are Majorana masses.In this volume, an overview of the present state of research in neutrino physics is given by well-known experimentalists and theorists. The contents -- originated from talks and discussions at a recent conference addressing some of the most pressing open questions in neutrino physics -- range from the oscillation experiments to CP-violation for leptons, to texture zero mass matrices and to the role of neutrinos in astrophysics and cosmology.
This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many of the leading authors in this field, cover both the experimental and theoretical aspects of these topics. Sample Chapter(s). Chapter 1: Historical Introduction to Electric and Mangnetic Moments (367 KB). Contents: Historical Introduction (B L Roberts); Electromagnetic Dipole Moments and New Physics (A Czarnecki & W J Marciano); Lepton g OCo 2 from 1947 to Present (T Kinoshita); Analytic QED Calculations of the Anomalous Magnetic Moment of the Electron (S Laporta & E Remiddi); Measurements of the Electron Magnetic Moment (G Gabrielse); Determining the Fine Structure Constant (G Gabrielse); Helium Fine Structure Theory for the Determination of (K Pachucki & J Sapirstein); Hadronic Vacuum Polarization and the Lepton Anomalous Magnetic Moments (M Davier); The Hadronic Light-by-Light Contribution to a, e (J Prades et al.); General Prescriptions for One-loop Contributions to a e, (K R Lynch); Measurement of the Muon ( g OCo 2) Value (J P Miller et al.); Muon ( g OCo 2) and Physics Beyond the Standard Model (D StAckinger); Probing CP Violation with Electric Dipole Moments (M Pospelov & A Ritz); The Electric Dipole Moment of the Electron (E D Commins & D DeMille); Neutron EDM Experiments (S K Lamoreaux & R Golub); Nuclear Electric Dipole Moments (W C Griffith et al.); EDM Measurements in Storage Rings (B L Roberts et al.); Models of Lepton Flavor Violation (Y Okada); Search for the Charged Lepton-Flavor-Violating Transition Moments l OaAE l OC (Y Kuno). Readership: Researchers and graduate students in particle physics, atomic physics and nuclear physics, as well as experts working in the field
This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations.
In 1947, the first of what have come to be known as "strange particles" were detected. As the number and variety of these particles proliferated, physicists began to try to make sense of them. Some seemed to have masses about 900 times that of the electron, and existed in both charged and neutral varieties. These particles are now called kaons (or K mesons), and they have become the subject of some of the most exciting research in particle physics. Kaon Physics at the Turn of the Millennium presents cutting-edge papers by leading theorists and experimentalists that synthesize the current state of the field and suggest promising new directions for the future study of kaons. Topics covered include the history of kaon physics, direct CP violation in kaon decays, time reversal violation, CPT studies, theoretical aspects of kaon physics, rare kaon decays, hyperon physics, charm: CP violation and mixing, the physics of B mesons, and future opportunities for kaon physics in the twenty-first century.
This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.
Since the 1980s the cross-disciplinary, multidimensional field of links between cosmology and particle physics has been widely recognised by theorists, studying cosmology, particle and nuclear physics, gravity, as well as by astrophysicists, astronomers, space physicists, experimental particle and nuclear physicists, mathematicians and engineers.The relationship between cosmology and particle physics is now one of the important topics of discussion at any scientific meeting both on astrophysics and high energy physics.Cosmoparticle physics is the result of the mutual relationship between cosmology and particle physics in their search for physical mechanisms of inflation, baryosynthesis, nonbaryonic dark matter, and for fundamental unity of the natural forces underlying them. The set of nontrivial links between cosmological consequences of particle models and the astrophysical data on matter and radiation in the modern universe maintains cosmoarcheology, testing self-consistently particular predictions of particle models on the base of cosmological scenarios, following from them. Complex analysis of all the indirect cosmological, astrophysical and microphysical phenomena makes cosmoparticle physics the science of the world and renders quantitatively definite the correspondence between its micro- and macroscopic structure.This book outlines the principal ideas of the modern particle theory and cosmology, their mutual relationship and the nontrivial correspondence of their physical and astrophysical effects.
Almost all theories of fundamental interactions are nowadays based on the gauge concept. Starting with the historical example of quantum electrodynamics, we have been led to the successful unified gauge theory of weak and electromagnetic interactions, and finally to a non abelian gauge theory of strong interactions with the notion of permanently confined quarks. The. early theoretical work on gauge theories was devoted to proofs of renormalizability, investigation of short distance behaviour, the discovery of asymptotic freedom, etc . . , aspects which were accessible to tools extrapolated from renormalised perturbation theory. The second phase of the subject is concerned with the problem of quark confinement which necessitates a non-perturbative understanding of gauge theories. This phase has so far been marked by the introduc tion of ideas from geometry, topology and statistical mechanics in particular the theory of phase transitions. The 1979 Cargese Institute on "Recent Developments on Gauge Theories" was devoted to a thorough discussion of these non-perturbative, global aspects of non-abelian gauge theories. In the lectures and seminars reproduced in this volume the reader wilf find detailed reports on most of the important developments of recent times on non perturbative gauge fields by some of the leading experts and innovators in this field. Aside from lectures on gauge fields proper, there were lectures on gauge field concepts in condensed matter physics and lectures by mathematicians on global aspects of the calculus of variations, its relation to geometry and topology, and related topics.