Download Free Heat Transfer Enhancement In Chemical Processes Book in PDF and EPUB Free Download. You can read online Heat Transfer Enhancement In Chemical Processes and write the review.

Heat Transfer Enhancement in Chemical Processes combines process technologies with heat exchange equipment to study heat transfer enhancement. The book provides guidance for the progress of process technologies and the application of enhanced heat transfer equipment. It analyzes the basic principles of heat transfer and summarizes the theories and methods of heat transfer enhancement, while also focusing on three representative processes in petrochemical industry, including oil refining, aromatics, and ethylene production. The book summarizes in a systematical way the practical application of heat transfer enhancement in the petrochemical industry, from the equipment components, the processes, and the whole plant. Puts theory into practice, providing guidance for the application of scientific research achievements Integrates process technologies with process intensification, providing guidance for process flow enhancement Combines process with equipment, introducing heat transfer enhancement technologies suitable for different processes Covers the oil refining unit, aromatics unit, the ethylene plant and its downstream units
Heat Transfer Enhancement in Chemical Processes combines process technologies with heat exchange equipment to study heat transfer enhancement. The book provides guidance for the progress of process technologies and the application of enhanced heat transfer equipment. It analyzes the basic principles of heat transfer and summarizes the theories and methods of heat transfer enhancement. Heat Transfer Enhancement in Chemical Processes focuses on three representative processes in petrochemical industry including oil refining, aromatics and ethylene production. The book summarizes in a systematical way the practical application of heat transfer enhancement in the petrochemical industry from the equipment components, the processes and the whole plant.
Presented in ten edited chapters this book encompasses important emerging topics in heat transfer equipment, particularly heat exchangers. The chapters have all been selected by invitation only. Advances in high temperature equipment and small scale devices continue to be important as the involved heat transfer and related phenomena are often complex in nature and different mechanisms like heat conduction, convection, turbulence, thermal radiation and phase change as well as chemical reactions may occur simultaneously. The book treats various operating problems, like fouling, and highlights applications in heat exchangers and gas turbine cooling. In engineering design and development, reliable and accurate computational methods are required to replace or complement expensive and time consuming experimental trial and error work. Tremendous advancements in knowledge and competence have been achieved during recent years due to improved computational solution methods for non-linear partial differential equations, turbulence modelling advancement and developments of computers and computing algorithms to achieve efficient and rapid simulations. The chapters of the book thoroughly present such advancement in a variety of applications.
Heat transfer enhancement in single-phase and two-phase flow heat exchangers in important in such industrial applications as power generating plant, process and chemical industry, heating, ventilation, air conditioning and refrigeration systems, and the cooling of electronic equipment. Energy savings are of primary importance in the design of such systems, leading to more efficient, environmentally friendly devices. This book provides invaluable information for such purposes.
Cutting-edge heat transfer principles and design applications Apply advanced heat transfer concepts to your chemical, petrochemical, and refining equipment designs using the detailed information contained in this comprehensive volume. Filled with valuable graphs, tables, and charts, Heat Transfer in Process Engineering covers the latest analytical and empirical methods for use with current industry software. Select heat transfer equipment, make better use of design software, calculate heat transfer coefficients, troubleshoot your heat transfer process, and comply with design and construction standards. Heat Transfer in Process Engineering allows you to: Review heat transfer principles with a direct focus on process equipment design Design, rate, and specify shell and tube, plate, and hairpin heat exchangers Design, rate, and specify air coolers with plain or finned tubes Design, rate, and specify different types of condensers with tube or shellside condensation for pure fluids or multicomponent mixtures Understand the principles and correlations of boiling heat transfer, with their limits on and applications to different types of reboiler design Apply correlations for fired heater ratings, for radiant and convective zones, and calculate fuel efficiency Obtain a set of useful Excel worksheets for process heat transfer calculations
Heat exchangers are widely used in the industrial sector, e.g. in the refrigeration, air conditioning, petrochemical, and agricultural food industry. The high cost of energy and material has resulted in an increased effort aimed at producing high performance heat exchanger equipment. Passive methods of heat transfer enhancement do not need external power for enhancement. One of these kinds of passive technique is twisted tape inserts that enhance the performance of heat exchangers. Using multiple twisted tape inserts gives better enhancement than a single twisted tape insert. Using nanofluid gives also better thermal performance than water. Therefore, nanofluid along with twisted tape inserts was used in this study. For this study, different combinations of multiple twisted tape inserts were designed and fabricated. These different combinations contain dual, triple, and quadruple twisted tapes. Directions of twists are also varied which enables to study the effect of different swirl flow generators. Nanofluid is used with various volume concentrations of 0.07%, 0.14% and 0.21% in order to investigate the effect of nanoparticle concentration on heat transfer enhancement. Experimental investigation was carried out by having a constant heat flux condition and by varying the volume flow rate of flow from 2 to 10 lpm.
Studies of fluid flow and heat transfer in a porous medium have been the subject of continuous interest for the past several decades because of the wide range of applications, such as geothermal systems, drying technologies, production of thermal isolators, control of pollutant spread in groundwater, insulation of buildings, solar power collectors, design of nuclear reactors, and compact heat exchangers, etc. There are several models for simulating porous media such as the Darcy model, Non-Darcy model, and non-equilibrium model. In porous media applications, such as the environmental impact of buried nuclear heat-generating waste, chemical reactors, thermal energy transport/storage systems, the cooling of electronic devices, etc., a temperature discrepancy between the solid matrix and the saturating fluid has been observed and recognized.
Heat transfer enhancement is one of the most promising methods to optimize heat transfer equipment and to increase heat recovery in industrial processes. Plate Heat Exchanger (PHE) is one of established types of enhanced HEs. To estimate possible benefits of that kind of heat transfer enhancement, a mathematical model of PHE, which accounts for different plate types and corresponding corrugations geometry, is used. Based on this model the optimization algorithm was developed using MINLP method with inequality constraints. The objective function is the heat transfer area of PHE unit. The plate spacing, plate length, the corrugations inclination angle to plate's vertical axis and the ratio of corrugations’ pitch to its height are the optimized variables. The developed algorithm is implemented as DLL module, which can be used for multiple calculations when optimizing heat exchanger networks (HEN).