Download Free Healthcare Informatics For Fighting Covid 19 And Future Epidemics Book in PDF and EPUB Free Download. You can read online Healthcare Informatics For Fighting Covid 19 And Future Epidemics and write the review.

This book presents innovative solutions utilising informatics to deal with various issues related to the COVID-19 outbreak. The book offers a collection of contemporary research and development on the management of Covid-19 using health data analytics, information exchange, knowledge sharing, the Internet of Things (IoT), and the Internet of Everything (IoE)-based solutions. The book also analyses the implementation, assessment, adoption, and management of these healthcare informatics solutions to manage the pandemic and future epidemics. The book is relevant to researchers, professors, students, and professionals in informatics and related topics.
This book presents a compilation of the most recent implementation of artificial intelligence methods for solving different problems generated by the COVID-19. The problems addressed came from different fields and not only from medicine. The information contained in the book explores different areas of machine and deep learning, advanced image processing, computational intelligence, IoT, robotics and automation, optimization, mathematical modeling, neural networks, information technology, big data, data processing, data mining, and likewise. Moreover, the chapters include the theory and methodologies used to provide an overview of applying these tools to the useful contribution to help to face the emerging disaster. The book is primarily intended for researchers, decision makers, practitioners, and readers interested in these subject matters. The book is useful also as rich case studies and project proposals for postgraduate courses in those specializations.
ENABLING HEALTHCARE 4.0 for PANDEMICS The book explores the role and scope of AI, machine learning and other current technologies to handle pandemics. In this timely book, the editors explore the current state of practice in Healthcare 4.0 and provide a roadmap for harnessing artificial intelligence, machine learning, and Internet of Things, as well as other modern cognitive technologies, to aid in dealing with the various aspects of an emergency pandemic outbreak. There is a need to improvise healthcare systems with the intervention of modern computing and data management platforms to increase the reliability of human processes and life expectancy. There is an urgent need to come up with smart IoT-based systems which can aid in the detection, prevention and cure of these pandemics with more precision. There are a lot of challenges to overcome but this book proposes a new approach to organize the technological warfare for tackling future pandemics. In this book, the reader will find: State-of-the-art technological advancements in pandemic management; AI and ML-based identification and forecasting of pandemic spread; Smart IoT-based ecosystem for pandemic scenario. Audience The book will be used by researchers and practitioners in computer science, artificial intelligence, bioinformatics, data scientists, biomedical statisticians, as well as industry professionals in disaster and pandemic management.
The COVID-19 pandemic has highlighted the importance of health data, technology, and access to health informatics. The applications of several information technologies in the context of healthcare are proving instrumental in pandemic control. These technologies were already actively used in the healthcare sector before the pandemic. However, the pandemic has resulted in researchers reassessing how these technologies could have better assisted with the aftermath of the COVID-19 pandemic and how they may mitigate the threat of future pandemics. Health Informatics and Patient Safety in Times of Crisis provides a fresh perspective on how healthcare informatics has managed the current pandemic and how improved healthcare informatics could help in a future crisis. Covering topics such as digital public health, misinformation, and knowledge management, this premier reference source is an indispensable resource for medical professionals, hospital administrators, public health officials, community leaders, international leaders, libraries, medical students, medical professors, researchers, and academicians.
This book presents the latest research, theoretical methods, and novel applications in the field of Health 5.0. The authors focus on combating COVID-19 or other pandemics through facilitating various technological services. The authors discuss new models, practical solutions, and technological advances related to detecting and analyzing COVID-19 or other pandemic based on machine intelligence models and communication technologies. The aim of the coverage is to help decision-makers, managers, professionals, and researchers design new paradigms considering the unique opportunities associated with computational intelligence and Internet of Medical Things (IoMT). This book emphasizes the need to analyze all the information through studies and research carried out in the field of computational intelligence, communication networks, and presents the best solutions to combat COVID and other pandemics.
This book introduces the most recent research and innovative developments regarding the new strains of COVID-19. While medical and natural sciences have been working instantly on deriving solutions and trying to protect humankind against such virus types, there is also a great focus on technological developments for improving the mechanism – momentum of science for effective and efficient solutions. At this point, computational intelligence is the most powerful tools for researchers to fight against COVID-19. Thanks to instant data-analyze and predictive techniques by computational intelligence, it is possible to get positive results and introduce revolutionary solutions against related medical diseases. By running capabilities – resources for rising the computational intelligence, technological fields like Artificial Intelligence (with Machine / Deep Learning), Data Mining, Applied Mathematics are essential components for processing data, recognizing patterns, modelling new techniques and improving the advantages of the computational intelligence more. Nowadays, there is a great interest in the application potentials of computational intelligence to be an effective approach for taking humankind more step away, after COVID-19 and before pandemics similar to the COVID-19 many appear.
This third global survey of the WHO Global Observatory for eHealth (GOe) investigated how eHealth can support universal health coverage(UHC) in Member States. A total of 125 countries participated in the survey ? a clear reflection of the growing interest in this area. The report considers eHealth foundations built through policy development funding approaches and capacity building in eHealth through the training of students and professionals. It then observes specific eHealth applications such as mHealth telehealth electronic health records systems and eLearning and how these contribute to the goals of UHC. Of interest is the extent to which legal frameworks protect patient privacy in EHRs as health care systems move towards to delivering safer more efficient and more accessible health care. Finally the rapidly emerging areas of social media for health care as well as big data for research and planning are reported.
Deep Learning in Personalized Healthcare and Decision Support discusses the potential of deep learning technologies in the healthcare sector. The book covers the application of deep learning tools and techniques in diverse areas of healthcare, such as medical image classification, telemedicine, clinical decision support system, clinical trials, electronic health records, precision medication, Parkinson disease detection, genomics, and drug discovery. In addition, it discusses the use of DL for fraud detection and internet of things. This is a valuable resource for researchers, graduate students and healthcare professionals who are interested in learning more about deep learning applied to the healthcare sector. Although there is an increasing interest by clinicians and healthcare workers, they still lack enough knowledge to efficiently choose and make use of technologies currently available. This book fills that knowledge gap by bringing together experts from technology and clinical fields to cover the topics in depth. - Discusses the application of deep learning in several areas of healthcare, including clinical trials, telemedicine and health records management - Brings together experts in the intersection of deep learning, medicine, healthcare and programming to cover topics in an interdisciplinary way - Uncovers the stakes and possibilities involved in realizing personalized healthcare services through efficient and effective deep learning technologies