Download Free Hazardous And Radioactive Waste Treatment Technologies Handbook Book in PDF and EPUB Free Download. You can read online Hazardous And Radioactive Waste Treatment Technologies Handbook and write the review.

With detailed photos and schematic system diagrams, the Hazardous and Radioactive Waste Treatment Technologies Handbook provides the latest information on current technologies in the market. Intended as a reference for scientists, engineers, and engineering students, it covers waste-related thermal and non-thermal technologies, separation techniques, and stabilization technologies. It provides an overview of recent waste technologies, for both hazardous chemical wastes and radioactive wastes. By implementing the techniques presented in this book, readers will be able to decide which appropriate technology to use and how to design the equipment for their particular needs.
Radioactive wastes are generated from a wide range of sources, including the power industry, and medical and scientific research institutions, presenting a range of challenges in dealing with a diverse set of radionuclides of varying concentrations. Conditioning technologies are essential for the encapsulation and immobilisation of these radioactive wastes, forming the initial engineered barrier required for their transportation, storage and disposal. The need to ensure the long term performance of radioactive waste forms is a key driver of the development of advanced conditioning technologies.The Handbook of advanced radioactive waste conditioning technologies provides a comprehensive and systematic reference on the various options available and under development for the treatment and immobilisation of radioactive wastes. The book opens with an introductory chapter on radioactive waste characterisation and selection of conditioning technologies. Part one reviews the main radioactive waste treatment processes and conditioning technologies, including volume reduction techniques such as compaction, incineration and plasma treatment, as well as encapsulation methods such as cementation, calcination and vitrification. This coverage is extended in part two, with in-depth reviews of the development of advanced materials for radioactive waste conditioning, including geopolymers, glass and ceramic matrices for nuclear waste immobilisation, and waste packages and containers for disposal. Finally, part three reviews the long-term performance assessment and knowledge management techniques applicable to both spent nuclear fuels and solid radioactive waste forms.With its distinguished international team of contributors, the Handbook of advanced radioactive waste conditioning technologies is a standard reference for all radioactive waste management professionals, radiochemists, academics and researchers involved in the development of the nuclear fuel cycle. - Provides a comprehensive and systematic reference on the various options available and under development for the treatment and immobilisation of radioactive wastes - Explores radioactive waste characterisation and selection of conditioning technologies including the development of advanced materials for radioactive waste conditioning - Assesses the main radioactive waste treatment processes and conditioning technologies, including volume reduction techniques such as compaction
Over the past decade significant progress has been achieved in the development of waste characterization and control procedures and equipment as a direct response to ever-increasing requirements for quality and reliability of information on waste characteristics. Failure in control procedures at any step can have important, adverse consequences and may result in producing waste packages which are not compliant with the waste acceptance criteria for disposal, thereby adversely impacting the repository. The information and guidance included in this publication corresponds to recent achievements and reflects the optimum approaches, thereby reducing the potential for error and enhancing the quality of the end product. -- Publisher's description.
Advanced separations technology is key to closing the nuclear fuel cycle and relieving future generations from the burden of radioactive waste produced by the nuclear power industry. Nuclear fuel reprocessing techniques not only allow for recycling of useful fuel components for further power generation, but by also separating out the actinides, lanthanides and other fission products produced by the nuclear reaction, the residual radioactive waste can be minimised. Indeed, the future of the industry relies on the advancement of separation and transmutation technology to ensure environmental protection, criticality-safety and non-proliferation (i.e., security) of radioactive materials by reducing their long-term radiological hazard.Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment provides a comprehensive and timely reference on nuclear fuel reprocessing and radioactive waste treatment. Part one covers the fundamental chemistry, engineering and safety of radioactive materials separations processes in the nuclear fuel cycle, including coverage of advanced aqueous separations engineering, as well as on-line monitoring for process control and safeguards technology. Part two critically reviews the development and application of separation and extraction processes for nuclear fuel reprocessing and radioactive waste treatment. The section includes discussions of advanced PUREX processes, the UREX+ concept, fission product separations, and combined systems for simultaneous radionuclide extraction. Part three details emerging and innovative treatment techniques, initially reviewing pyrochemical processes and engineering, highly selective compounds for solvent extraction, and developments in partitioning and transmutation processes that aim to close the nuclear fuel cycle. The book concludes with other advanced techniques such as solid phase extraction, supercritical fluid and ionic liquid extraction, and biological treatment processes.With its distinguished international team of contributors, Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment is a standard reference for all nuclear waste management and nuclear safety professionals, radiochemists, academics and researchers in this field. - A comprehensive and timely reference on nuclear fuel reprocessing and radioactive waste treatment - Details emerging and innovative treatment techniques, reviewing pyrochemical processes and engineering, as well as highly selective compounds for solvent extraction - Discusses the development and application of separation and extraction processes for nuclear fuel reprocessing and radioactive waste treatment
Environmental remediation technologies to control or prevent pollution from hazardous waste material is a growing research area in academia and industry, and is a matter of utmost concern to public health, to improve ecology and to facilitate the redevelopment of a contaminated site. Recently, in situ and ex situ remediation technologies have been developed to rectify the contaminated sites, utilizing various tools and devices through physical, chemical, biological, electrical, and thermal processes to restrain, remove, extract, and immobilize mechanisms to minimize the contamination effects. This handbook brings altogether classical and emerging techniques for hazardous wastes, municipal solid wastes and contaminated water sites, combining chemical, biological and engineering control methods to provide a one-stop reference. This handbook presents a comprehensive and thorough description of several remediation techniques for contaminated sites resulting from both natural processes and anthropogenic activities. Providing critical insights into a range of treatments from chemical oxidation, thermal treatment, air sparging, electrokinetic remediation, stabilization/solidification, permeable reactive barriers, thermal desorption and incineration, phytoremediation, biostimulation and bioaugmentation, bioventing and biosparging through ultrasound-assisted remediation methods, electrochemical remediation methods, and nanoremediation, this handbook provides the reader an inclusive and detailed overview and then discusses future research directions. Closing chapters on green sustainable remediation, economics, health and safety issues, and environmental regulations around site remediation will make this a must-have handbook for those working in the field.
This book discusses the practical aspects of environmental technology organized into eight chapters relating to unit operations as follows: 1. Biological Technology 2. Chemical Technology 3. Containment and Barrier Technology 4. Immobilization Technology 5. Membrane Technology 6. Physical Technology 7. Radiation and Electrical Technology 8. Thermal Destruction Technology Traditional technologies have been included, as well as those that can be considered innovative and emerging. The traditional approaches have been the most successful, as contractors are careful about bidding on some of the newer technologies. However, as regulatory requirements increase, markets will open for the innovative and emerging processes. There will be increasing pressure to break down complex waste streams, with each subsequent stream demanding separate treatment. In addition, a number of technologies have been developed by combining processes directly, or in a treatment train, and these developments are expected to assume increasing importance. However, such concerns as uncertainties due to liability, regulatory approval, price competition, and client approval have limited the application of some of these newer technologies.
Environmental Treatment Technologies for Municipal, Industrial and Medical Wastes will provide the reader with a simple and clear path to analyze the full range of options to manage/treat any solid, hazardous, or medical waste problems/issues at hand. This book aims to disseminate information on available remediation treatment technologies to developing and developed countries. It also includes adequate information on all available treatment technologies for different types and categories of waste (hazardous, non-hazardous municipal solid waste, and medical waste). The technologies are grouped into the following categories: Containment technology; Soil washing; Thermal treatment; Vapor extraction; Bioremediation including Phytoremediation; Plasma/Incineration; Other Physical/Chemical treatments. It enlightens the effect of emissions during remediation activities on climate change and suggests measures to identify and control such emissions. It also covers the application of remote sensing technologies with examples and the impending issues of proper disinfection and disposal of COVID-19 related waste pertaining to the current pandemic. It is intended for almost anyone — ranging from college students and early career professionals interested in environmental pollution control, to graduate students, researchers and experienced professionals. This book will: cover several recent developments on various treatment technologies, including in situ applications and their emission/migration control methods including remote sensing technologies; deal with municipal solid waste, their treatment/disposal methods, recycling, and reuse in addition to the hazardous and medical waste management program; assist civil/environmental engineering students and local community organizations in evaluating the impact of an industry and its associated waste produced on-site; and cover how best to treat/manage the waste to arrive at a safe operation without impacting human health and the local environment.
Biomedical Technology and Devices, Second Edition focuses on the equipment, devices, and techniques used in modern medicine to diagnose, treat, and monitor human illnesses. Gathering together and compiling the latest information available on medical technology, this revised work adds ten new chapters. It starts with the basics, introducing the history of the thermometer and measuring body temperature, before moving on to a medley of devices that are far more complex. This book explores diverse technological functions and procedures including signal processing, auditory systems, magnetic resonance imaging, ultrasonic and emission imaging, image-guided thermal therapy, medical robotics, shape memory alloys, biophotonics, and tissue engineering. Each chapter offers a description of the technique, its technical considerations, and its use according to its applications and relevant body systems. It can be used as a professional resource, as well as a textbook for undergraduate and graduate students.
Potable water treatment processes produce safe drinking water and generate a wide variety of waste products known as residuals, including organic and inorganic compounds in liquid, solid, and gaseous forms. In the current regulatory climate, a complete management program for a water treatment facility should include the development of a plan to remove and dispose of these residuals in a manner that meets the crucial goals of cost effectiveness and regulatory compliance. This comprehensive water treatment residuals management plan should involve the: 1) Characterization of the form, quantity, and quality of the residuals; 2) determination of the appropriate regulatory requirements; 3) identification of feasible disposal options; 4) selection of appropriate residuals processing/treatment technologies; and development of a residuals management strategy that meets both the economic and noneconomic goals established for a water treatment facility. This manual provides general information and insight into each of these activities that a potable water treatment facility should perform in developing a residuals management plan.