Download Free Harnessing Solar Heat Book in PDF and EPUB Free Download. You can read online Harnessing Solar Heat and write the review.

Systems engineered by man to harness solar heat in a controlled manner now include a diverse range of technologies each serving distinctive needs in particular climate contexts. This text covers the breadth of solar energy technologies for the conversion of solar energy to provide heat, either as the directly-used output or as an intermediary to other uses such as power generation or cooling. It is a wholly updated, extended and revised version of “Solar Energy Thermal Technology” first published in 1992. The text draws on the own author’s research and that of numerous colleagues and collaborators at Cranfield University, University of Ulster, Dublin Institute of Technology, Indian Institute of Technology, Delhi and University of Nigeria. The initial chapters deal with relevant fundamental aspects of solar energy meteorology, radiative heat transfer, material properties and energy storage. Solar energy collectors are discussed in detail before a set of chapters deal with each of the full range of applications. The early chapters consider: the solar energy resource, its distribution in geographical, spectral, skyward geometrical and temporal domains; the physics of solar energy absorption, transmission and loss at surfaces; and techniques for storing collected solar energy. Specific collector sub-systems are then discussed in chapters seven to nine. For each system, practical issues are discussed and a proven analytical procedure for predicting performance described. Similarly analyses are presented in the concluding chapters on solar energy systems. These range from dryers to greenhouses to systems that render buildings solar energy systems in themselves and the associated design issues. The context for any use of solar energy is the prevailing climate. This text, being global in scope, definates the most appropriate regions for particular technologies and applications. It is a research-orientated academic work citing publications on the peer-reviewed literature covering engineering and applied science topics intended both for student use, as a reference tool for teaching solar energy and for those researching solar thermal applications in universities, industry or national/commercial laboratories. Insight into the challenges of implementation including practical constraints and operational considerations are provided to aid those undertaking feasibility studies, technical assistance, training assignments or operating testing facilities.
Imagine living in a world with clean air and very little pollution. Imagine never having to hear your parents complain about paying the electric bill. Does that sound too good to be true? It's all possible with solar energy. Learn how actor Ed Begley Jr. lives in his solar home. Read how solar power works and why scientists think solar energy will be the next great energy resource. You can learn how to save energy in your own home. You can even find out how to make your own solar oven and cook yourself a solar hot dog feast.
The world is undergoing a significant shift toward sustainability and energy efficiency, with increasing awareness of the environmental challenges posed by traditional energy sources. Among the most energy-intensive systems in homes, businesses, and industrial settings are Heating, Ventilation, and Air Conditioning (HVAC) systems. These systems account for a substantial portion of global energy consumption and are often powered by fossil fuels, contributing to greenhouse gas emissions and environmental degradation. As the demand for energy continues to grow, so does the need for more sustainable and renewable solutions. Renewable energy, particularly solar, wind, and geothermal, presents a viable alternative to traditional power sources for HVAC systems. These natural energy sources offer a cleaner, more sustainable way to heat and cool buildings, reducing both energy costs and the carbon footprint of HVAC operations. The Importance of Renewable HVAC Systems HVAC systems are essential for maintaining indoor comfort, but their energy requirements can be immense, especially in extreme climates. Traditional systems rely heavily on electricity generated from non-renewable sources, leading to significant environmental impact. Transitioning to renewable HVAC solutions not only addresses environmental concerns but also offers long-term economic benefits. Renewable energy HVAC systems are designed to harness the power of the sun, wind, and the Earth itself to provide heating, cooling, and ventilation. These systems not only reduce dependence on fossil fuels but also help stabilize energy costs in the long run. With advances in technology, renewable HVAC systems have become more efficient, reliable, and affordable, making them a practical option for a wide range of applications—from residential homes to large commercial facilities.
Solar Energy Technology deals with all aspects of solar energy systems. The fundamentals of predicting avail- ability; economic appraisal strategies; specific collector sub-systems, including a proven analytical procedure for predicting performance; and analyses of solar energy systems from dryers to greenhouses, passive solar buildings to water pumps, are covered in depth. Researchers and technologists need to have an insight into the challenges implementation entails, and this book presents practical constraints, operational considerations, and the latest research results. The book should be of great interest to students as well as professionals undertaking feasibility studies, development and implementation, technical assistance, and training assignments. Political action and pressure groups will also find the text useful for developing energy policies.
In recent years, scientists and researchers have been continually searching for efficient and effective ways to harness solar energy for heat and power production. The development of solar technologies and thermal systems are a prevalent area of study, as they represent a vital step in fully optimizing the potential of solar energy. Unfortunately, research is still lacking on the development and application of these solar thermal systems. Modeling and Optimization of Solar Thermal Systems: Emerging Research and Opportunities provides emerging research exploring the theoretical and practical aspects of optimizing the performance of solar thermal technologies using multicriteria decision-making techniques. Featuring coverage on a broad range of topics such as parabolic trough collectors, hybrid solar energy, and thermal technology, this book is ideally designed for practitioners, engineers, academicians, researchers, students, industry professionals, and educators seeking current research on modern modeling methods of solar thermal systems.
This book examines how the enormous power of the Sun can be used to meet the world's growing energy needs, highlighting new technologies.
This book focuses on solar-energy-based renewable energy systems and discusses the generation of electric power using solar photovoltaics, as well as some new techniques, such as solar towers, for both residential and commercial needs. Such systems have played an important role in the move towards low-emission and sustainable energy sources. The book covers a variety of applications, such as solar water heaters, solar air heaters, solar drying, nanoparticle-based direct absorption solar systems, solar volumetric receivers, solar-based cooling systems, solar-based food processing and cooking, efficient buildings using solar energy, and energy storage for solar thermal systems. Given its breadth of coverage, the book offers a valuable resource for researchers, students, and professionals alike.
Managing Global Warming: An Interface of Technology and Human Issues discusses the causes of global warming, the options available to solve global warming problems, and how each option can be realistically implemented. It is the first book based on scientific content that presents an overall reference on both global warming and its solutions in one volume. Containing authoritative chapters written by scientists and engineers working in the field, each chapter includes the very latest research and references on the potential impact of wind, solar, hydro, geo-engineering and other energy technologies on climate change. With this wide ranging set of topics and solutions, engineers, professors, leaders and policymakers will find this to be a valuable handbook for their research and work. - Presents chapters that are accompanied by an easy reference summary - Includes up-to-date options and technical solutions for global warming through color imagery - Provides up-to-date information as presented by a collection of renowned global experts
Concentrating solar power (CSP) technology is poised to take its place as one of the major contributors to the future clean energy mix. Using straightforward manufacturing processes, CSP technology capitalises on conventional power generation cycles, whilst cost effectively matching supply and demand though the integration of thermal energy storage. Concentrating solar power technology provides a comprehensive review of this exciting technology, from the fundamental science to systems design, development and applications.Part one introduces fundamental principles of concentrating solar power systems. Site selection and feasibility analysis are discussed, alongside socio-economic and environmental assessments. Part two focuses on technologies including linear Fresnel reflector technology, parabolic-trough, central tower and parabolic dish concentrating solar power systems, and concentrating photovoltaic systems. Thermal energy storage, hybridization with fossil fuel power plants and the long-term market potential of CSP technology are explored. Part three goes on to discuss optimisation, improvements and applications. Topics discussed include absorber materials for solar thermal receivers, design optimisation through integrated techno-economic modelling, heliostat size optimisation, heat flux and temperature measurement technologies, concentrating solar heating and cooling for industrial processes, and solar fuels and industrial solar chemistry.With its distinguished editors and international team of expert contributors, Concentrating solar power technology is an essential guide for all those involved or interested in the design, production, development, optimisation and application of CSP technology, including renewable energy engineers and consultants, environmental governmental departments, solar thermal equipment manufacturers, researchers and academics. - Provides a comprehensive review of concentrating solar power (CSP) technology, from the fundamental science to systems design, development and applications - Reviews fundamental principles of concentrating solar power systems, including site selection and feasibility analysis and socio-economic and environmental assessments - Provides an overview of technologies such as linear Fresnel reflector technology, parabolic-trough, central tower and parabolic dish concentrating solar power systems, and concentrating photovoltaic systems