Download Free Harmonic Maps Conservation Laws And Moving Frames Book in PDF and EPUB Free Download. You can read online Harmonic Maps Conservation Laws And Moving Frames and write the review.

Accessible and pedagogical introduction to the theory of harmonic maps, covering recent results and applications.
Publisher Description
This book contains the proceedings of the Fourth Meeting on CPT and Lorentz Symmetry, held at Indiana University in Bloomington on August 8-11, 2007. The Meeting focused on experimental tests of these fundamental symmetries and on important theoretical issues, including scenarios for possible relativity violations. Experimental subjects covered include: astrophysical observations, clock-comparison measurements, cosmological birefringence, electromagnetic resonant cavities, gravitational tests, matter interferometry, muon behavior, neutrino oscillations, oscillations and decays of neutral mesons, particle-antiparticle comparisons, post-Newtonian gravity, space-based missions, spectroscopy of hydrogen and antihydrogen, and spin-polarized matter.Theoretical topics covered include: physical effects at the level of the Standard Model, General Relativity, and beyond; the possible origins and mechanisms for Lorentz and CPT violations; and associated issues in field theory, particle physics, gravity, and string theory. The contributors consist of the leading experts in this very active research field.
The subject of harmonic morphisms is relatively new but has attracted a huge worldwide following. Mathematicians, young researchers and distinguished experts came from all corners of the globe to the City of Brest - site of the first, international conference devoted to the fledgling but dynamic field of harmonic morphisms. Harmonic Morphisms, Harmonic Maps, and Related Topics reports the proceedings of that conference, forms the first work primarily devoted to harmonic morphisms, bringing together contributions from the founders of the subject, leading specialists, and experts in other related fields. Starting with "The Beginnings of Harmonic Morphisms," which provides the essential background, the first section includes papers on the stability of harmonic morphisms, global properties, harmonic polynomial morphisms, Bochner technique, f-structures, symplectic harmonic morphisms, and discrete harmonic morphisms. The second section addresses the wider domain of harmonic maps and contains some of the most recent results on harmonic maps and surfaces. The final section highlights the rapidly developing subject of constant mean curvature surfaces. Harmonic Morphisms, Harmonic Maps, and Related Topics offers a coherent, balanced account of this fast-growing subject that furnishes a vital reference for anyone working in the field.
This book intends to give an introduction to harmonic maps between a surface and a symmetric manifold and constant mean curvature surfaces as completely integrable systems. The presentation is accessible to undergraduate and graduate students in mathematics but will also be useful to researchers. It is among the first textbooks about integrable systems, their interplay with harmonic maps and the use of loop groups, and it presents the theory, for the first time, from the point of view of a differential geometer. The most important results are exposed with complete proofs (except for the last two chapters, which require a minimal knowledge from the reader). Some proofs have been completely rewritten with the objective, in particular, to clarify the relation between finite mean curvature tori, Wente tori and the loop group approach - an aspect largely neglected in the literature. The book helps the reader to access the ideas of the theory and to acquire a unified perspective of the subject.
Harmonic maps between Riemannian manifolds were first established by James Eells and Joseph H. Sampson in 1964. Wave maps are harmonic maps on Minkowski spaces and have been studied since the 1990s. Yang-Mills fields, the critical points of Yang-Mills functionals of connections whose curvature tensors are harmonic, were explored by a few physicists in the 1950s, and biharmonic maps (generalizing harmonic maps) were introduced by Guoying Jiang in 1986. The book presents an overview of the important developments made in these fields since they first came up. Furthermore, it introduces biwave maps (generalizing wave maps) which were first studied by the author in 2009, and bi-Yang-Mills fields (generalizing Yang-Mills fields) first investigated by Toshiyuki Ichiyama, Jun-Ichi Inoguchi and Hajime Urakawa in 2008. Other topics discussed are exponential harmonic maps, exponential wave maps and exponential Yang-Mills fields.
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents
The aim of this volume is to bring together research ideas from various fields of mathematics which utilize the heat kernel or heat kernel techniques in their research. The intention of this collection of papers is to broaden productive communication across mathematical sub-disciplines and to provide a vehicle which would allow experts in one field to initiate research with individuals in another field, as well as to give non-experts a resource which can facilitate expanding theirresearch and connecting with others.
These original research papers, written during a period of over a quarter of a century, have two main objectives. The first is to lay the foundations of the theory of harmonic maps between Riemannian Manifolds, and the second to establish various existence and regularity theorems as well as the explicit constructions of such maps.