Download Free Harmonic Functions And Random Walks On Groups Book in PDF and EPUB Free Download. You can read online Harmonic Functions And Random Walks On Groups and write the review.

Research in recent years has highlighted the deep connections between the algebraic, geometric, and analytic structures of a discrete group. New methods and ideas have resulted in an exciting field, with many opportunities for new researchers. This book is an introduction to the area from a modern vantage point. It incorporates the main basics, such as Kesten's amenability criterion, Coulhon and Saloff-Coste inequality, random walk entropy and bounded harmonic functions, the Choquet–Deny Theorem, the Milnor–Wolf Theorem, and a complete proof of Gromov's Theorem on polynomial growth groups. The book is especially appropriate for young researchers, and those new to the field, accessible even to graduate students. An abundance of examples, exercises, and solutions encourage self-reflection and the internalization of the concepts introduced. The author also points to open problems and possibilities for further research.
The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.
This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.
This text presents the basic theory of random walks on infinite, finitely generated groups, along with certain background material in measure-theoretic probability. The main objective is to show how structural features of a group, such as amenability/nonamenability, affect qualitative aspects of symmetric random walks on the group, such as transience/recurrence, speed, entropy, and existence or nonexistence of nonconstant, bounded harmonic functions. The book will be suitable as a textbook for beginning graduate-level courses or independent study by graduate students and advanced undergraduate students in mathematics with a solid grounding in measure theory and a basic familiarity with the elements of group theory. The first seven chapters could also be used as the basis for a short course covering the main results regarding transience/recurrence, decay of return probabilities, and speed. The book has been organized and written so as to be accessible not only to students in probability theory, but also to students whose primary interests are in geometry, ergodic theory, or geometric group theory.
The classical theory of random walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.
No detailed description available for "PROB. TH. MATH. ST. ( GRIGELIONIS) VOL. 2 PROC.5/1989 E-BOOK".
An up-to-date, panoramic account of the theory of random walks on groups and graphs, outlining connections with various mathematical fields.
A modern introduction into the emerging research field of harmonic functions and random walks on groups.
This graduate textbook provides a detailed introduction to the probabilistic interpretation of nonlinear potential theory, relying on the recently introduced notion of tug-of-war games with noise. The book explores both basic and more advanced constructions, carefully explaining the parallel between linear and nonlinear cases. The presentation is self-contained with many exercises, making the book suitable as a textbook for a graduate course, as well as for self-study. Extensive background and auxiliary material allow the tailoring of courses to individual student levels.
This volume presents the proceedings of the workshop "Harmonic Functions on Graphs" held at the Graduate Centre of CUNY in the autumn of 1995. The main papers present material from four minicourses given by leading experts: D. Cartwright, A. Figà-Talamanca, S. Sawyer, and T. Steger. These minicrouses are introductions which gradually progress to deeper and less known branches of the subject. One of the topics treated is buildings, which are discrete analogues of symmetric spaces of arbitrary rank; buildings of rank are trees. Harmonic analysis on buildings is a fairly new and important field of research. One of the minicourses discusses buildings from the combinatorial perspective and another examines them from the p-adic perspective. the third minicourse deals with the connections of trees with p-adic analysis, and the fourth deals with random walks, ie., with the probabilistic side of harmonic functions on trees. The book also contains the extended abstracts of 19 of the 20 lectures given by the participants on their recent results. These abstracts, well detailed and clearly understandable, give a good cross-section of the present state of research in the field.