Download Free Hardware Software Architectures For Low Power Embedded Multimedia Systems Book in PDF and EPUB Free Download. You can read online Hardware Software Architectures For Low Power Embedded Multimedia Systems and write the review.

This book presents techniques for energy reduction in adaptive embedded multimedia systems, based on dynamically reconfigurable processors. The approach described will enable designers to meet performance/area constraints, while minimizing video quality degradation, under various, run-time scenarios. Emphasis is placed on implementing power/energy reduction at various abstraction levels. To enable this, novel techniques for adaptive energy management at both processor architecture and application architecture levels are presented, such that both hardware and software adapt together, minimizing overall energy consumption under unpredictable, design-/compile-time scenarios.
This book constitutes the refereed proceedings of the 6th International Workshop on Systems, Architectures, Modeling, and Simulation, SAMOS 2006, held in Samos, Greece on July 2006. The 47 revised full papers presented together with 2 keynote talks were thoroughly reviewed and selected from 130 submissions. The papers are organized in topical sections on system design and modeling, wireless sensor networks, processor design, dependable computing, architectures and implementations, and embedded sensor systems.
This book provides its readers with the means to implement energy-efficient video systems, by using different optimization approaches at multiple abstraction levels. The authors evaluate the complete video system with a motive to optimize its different software and hardware components in synergy, increase the throughput-per-watt, and address reliability issues. Subsequently, this book provides algorithmic and architectural enhancements, best practices and deployment models for new video systems, while considering new implementation paradigms of hardware accelerators, parallelism for heterogeneous multi- and many-core systems, and systems with long life-cycles. Particular emphasis is given to the current video encoding industry standard H.264/AVC, and one of the latest video encoders (High Efficiency Video Coding, HEVC).
The power consumption of microprocessors is one of the most important challenges of high-performance chips and portable devices. In chapters drawn from Piguet's recently published Low-Power Electronics Design, Low-Power CMOS Circuits: Technology, Logic Design, and CAD Tools addresses the design of low-power circuitry in deep submicron technologies. It provides a focused reference for specialists involved in designing low-power circuitry, from transistors to logic gates. The book is organized into three broad sections for convenient access. The first examines the history of low-power electronics along with a look at emerging and possible future technologies. It also considers other technologies, such as nanotechnologies and optical chips, that may be useful in designing integrated circuits. The second part explains the techniques used to reduce power consumption at low levels. These include clock gating, leakage reduction, interconnecting and communication on chips, and adiabatic circuits. The final section discusses various CAD tools for designing low-power circuits. This section includes three chapters that demonstrate the tools and low-power design issues at three major companies that produce logic synthesizers. Providing detailed examinations contributed by leading experts, Low-Power CMOS Circuits: Technology, Logic Design, and CAD Tools supplies authoritative information on how to design and model for high performance with low power consumption in modern integrated circuits. It is a must-read for anyone designing modern computers or embedded systems.
Energy-Aware Memory Management for Embedded Multimedia Systems: A Computer-Aided Design Approach presents recent computer-aided design (CAD) ideas that address memory management tasks, particularly the optimization of energy consumption in the memory subsystem. It explains how to efficiently implement CAD solutions, including theoretical methods an
This textbook is intended to give an introduction to and an overview of sta- of-the-art techniques in the design of complex embedded systems. The book title is SAMOS for two major reasons. First, it tries to focus on the actual distinct, yet important problem ?elds of System-Level design of embedded systems, including mapping techniques and synthesis,Architectural design,Modeling issues such as speci?cation languages, formal models, and- nallySimulation. The second reason is that the volume includes a number of papers presented at a workshop with the same name on the Island of Samos, Greece, in July 2001. In order to receive international attention, a number of reputed researchers were invited to this workshop to present their current work. Participation was by invitation only. For the volume presented here, a number of additional papers where selected based on a call for papers. All contributions were refereed. This volume presents a selection of 18 of the refereed papers, including 2 invited papers. The textbook is organized according to four topics: The ?rst isA)System- LevelDesignandSimulation.Inthissection,wepresentacollectionofpapers that give an overview of the challenging goal to design and explore alternatives of embedded system implementations at the system-level. One paper gives an overview of models and tools used in system-level design. The other papers present new models to describe applications, provide models for re?nement and design space exploration, and for tradeo? analysis between cost and ?exibility of an implementation.
Introduction to Hardware-Software Co-Design presents a number of issues of fundamental importance for the design of integrated hardware software products such as embedded, communication, and multimedia systems. This book is a comprehensive introduction to the fundamentals of hardware/software co-design. Co-design is still a new field but one which has substantially matured over the past few years. This book, written by leading international experts, covers all the major topics including: fundamental issues in co-design; hardware/software co-synthesis algorithms; prototyping and emulation; target architectures; compiler techniques; specification and verification; system-level specification. Special chapters describe in detail several leading-edge co-design systems including Cosyma, LYCOS, and Cosmos. Introduction to Hardware-Software Co-Design contains sufficient material for use by teachers and students in an advanced course of hardware/software co-design. It also contains extensive explanation of the fundamental concepts of the subject and the necessary background to bring practitioners up-to-date on this increasingly important topic.
Modern system-on-chip (SoC) design shows a clear trend toward integration of multiple processor cores on a single chip. Designing a multiprocessor system-on-chip (MPSOC) requires an understanding of the various design styles and techniques used in the multiprocessor. Understanding the application area of the MPSOC is also critical to making proper tradeoffs and design decisions. Multiprocessor Systems-on-Chips covers both design techniques and applications for MPSOCs. Design topics include multiprocessor architectures, processors, operating systems, compilers, methodologies, and synthesis algorithms, and application areas covered include telecommunications and multimedia. The majority of the chapters were collected from presentations made at the International Workshop on Application-Specific Multi-Processor SoC held over the past two years. The workshop assembled internationally recognized speakers on the range of topics relevant to MPSOCs. After having refined their material at the workshop, the speakers are now writing chapters and the editors are fashioning them into a unified book by making connections between chapters and developing common terminology. *Examines several different architectures and the constraints imposed on them *Discusses scheduling, real-time operating systems, and compilers *Analyzes design trade-off and decisions in telecommunications and multimedia applications
The SAMOS workshop is an international gathering of highly quali?ed researchers from academia and industry, sharing in a 3-day lively discussion on the quiet and - spiring northern mountainside of the Mediterranean island of Samos. As a tradition, the workshop features workshop presentations in the morning, while after lunch all kinds of informal discussions and nut-cracking gatherings take place. The workshop is unique in the sense that not only solved research problems are presented and discussed but also (partly) unsolved problems and in-depth topical reviews can be unleashed in the sci- ti?c arena. Consequently, the workshop provides the participants with an environment where collaboration rather than competition is fostered. The earlier workshops, SAMOS I–IV (2001–2004), were composed only of invited presentations. Due to increasing expressions of interest in the workshop, the Program Committee of SAMOS V decided to open the workshop for all submissions. As a result the SAMOS workshop gained an immediate popularity; a total of 114 submitted papers were received for evaluation. The papers came from 24 countries and regions: Austria (1), Belgium (2), Brazil (5), Canada (4), China (12), Cyprus (2), Czech Republic (1), Finland (15), France (6), Germany (8), Greece (5), Hong Kong (2), India (2), Iran (1), Korea (24), The Netherlands (7), Pakistan (1), Poland (2), Spain (2), Sweden (2), T- wan (1), Turkey (2), UK (2), and USA (5). We are grateful to all of the authors who submitted papers to the workshop.
The main intention of this book is to give an impression of the state-of-the-art in system-level memory management (data transfer and storage) related issues for complex data-dominated real-time signal and data processing applications. The material is based on research at IMEC in this area in the period 1989- 1997. In order to deal with the stringent timing requirements and the data dominated characteristics of this domain, we have adopted a target architecture style and a systematic methodology to make the exploration and optimization of such systems feasible. Our approach is also very heavily application driven which is illustrated by several realistic demonstrators, partly used as red-thread examples in the book. Moreover, the book addresses only the steps above the traditional high-level synthesis (scheduling and allocation) or compilation (traditional or ILP oriented) tasks. The latter are mainly focussed on scalar or scalar stream operations and data where the internal structure of the complex data types is not exploited, in contrast to the approaches discussed here. The proposed methodologies are largely independent of the level of programmability in the data-path and controller so they are valuable for the realisation of both hardware and software systems. Our target domain consists of signal and data processing systems which deal with large amounts of data.