Download Free Haptic Technology Book in PDF and EPUB Free Download. You can read online Haptic Technology and write the review.

These days, people’s desire for an evolutionary interface is strong. The new model of human-machine interaction is expected to be more realistic and immersive. Haptic technology plays a key role in this regard. It can be used for medical, robotics, and digital heritage applications. Over three sections and five chapters, this book examines these potential uses of haptics. Chapters discuss using haptic feedback to improve robotic perception, for medical simulations, and to enhance digital heritage documentation.
The term “haptics” refers to the science of sensing and manipulation through touch. Multiple disciplines such as biomechanics, psychophysics, robotics, neuroscience, and software engineering converge to support haptics, and generally, haptic research is done by three communities: the robotics community, the human computer interface community, and the virtual reality community. This book is different from any other book that has looked at haptics. The authors treat haptics as a new medium rather than just a domain within one of the above areas. They describe human haptic perception and interfaces and present fundamentals in haptic rendering and modeling in virtual environments. Diverse software architectures for standalone and networked haptic systems are explained, and the authors demonstrate the vast application spectrum of this emerging technology along with its accompanying trends. The primary objective is to provide a comprehensive overview and a practical understanding of haptic technologies. An appreciation of the close relationship between the wide range of disciplines that constitute a haptic system is a key principle towards being able to build successful collaborative haptic environments. Structured as a reference to allow for fast accommodation of the issues concerned, this book is intended for researchers interested in studying touch and force feedback for use in technological multimedia systems in computer science, electrical engineering, or other related disciplines. With its novel approach, it paves the way for exploring research trends and challenges in such fields as interpersonal communication, games, or military applications.
An accessible, nontechnical overview of active touch sensing, from sensory receptors in the skin to tactile surfaces on flat screen displays. Haptics, or haptic sensing, refers to the ability to identify and perceive objects through touch. This is active touch, involving exploration of an object with the hand rather than the passive sensing of a vibration or force on the skin. The development of new technologies, including prosthetic hands and tactile surfaces for flat screen displays, depends on our knowledge of haptics. In this volume in the MIT Press Essential Knowledge series, Lynette Jones offers an accessible overview of haptics, or active touch sensing, and its applications. Jones explains that haptics involves integrating information from touch and kinesthesia—that is, information both from sensors in the skin and from sensors in muscles, tendons, and joints. The challenge for technology is to reproduce in a virtual world some of the sensations associated with physical interactions with the environment. Jones maps the building blocks of the tactile system, the receptors in the skin and the skin itself, and how information is processed at this interface with the external world. She describes haptic perception, the processing of haptic information in the brain; haptic illusions, or distorted perceptions of objects and the body itself; tactile and haptic displays, from braille to robotic systems; tactile compensation for other sensory impairments; surface haptics, which creates virtual haptic effects on physical surfaces such as touch screens; and the development of robotic and prosthetic hands that mimic the properties of human hands.
A material history of haptics technology that raises new questions about the relationship between touch and media Since the rise of radio and television, we have lived in an era defined increasingly by the electronic circulation of images and sounds. But the flood of new computing technologies known as haptic interfaces—which use electricity, vibration, and force feedback to stimulate the sense of touch—offering an alternative way of mediating and experiencing reality. In Archaeologies of Touch, David Parisi offers the first full history of these increasingly vital technologies, showing how the efforts of scientists and engineers over the past three hundred years have gradually remade and redefined our sense of touch. Through lively analyses of electrical machines, videogames, sex toys, sensory substitution systems, robotics, and human–computer interfaces, Parisi shows how the materiality of touch technologies has been shaped by attempts to transform humans into more efficient processors of information. With haptics becoming ever more central to emerging virtual-reality platforms (immersive bodysuits loaded with touch-stimulating actuators), wearable computers (haptic messaging systems like the Apple Watch’s Taptic Engine), and smartphones (vibrations that emulate the feel of buttons and onscreen objects), Archaeologies of Touch offers a timely and provocative engagement with the long history of touch technology that helps us confront and question the power relations underpinning the project of giving touch its own set of technical media.
Haptic interfaces are divided into two main categories: force feedback and tactile. Force feedback interfaces are used to explore and modify remote/virtual objects in three physical dimensions in applications including computer-aided design, computer-assisted surgery, and computer-aided assembly. Tactile interfaces deal with surface properties such as roughness, smoothness, and temperature. Haptic research is intrinsically multi-disciplinary, incorporating computer science/engineering, control, robotics, psychophysics, and human motor control. By extending the scope of research in haptics, advances can be achieved in existing applications such as computer-aided design (CAD), tele-surgery, rehabilitation, scientific visualization, robot-assisted surgery, authentication, and graphical user interfaces (GUI), to name a few. Advances in Haptics presents a number of recent contributions to the field of haptics. Authors from around the world present the results of their research on various issues in the field of haptics.
This book is aimed not only at haptics and human interface researchers, but also at developers and designers from manufacturing corporations and the entertainment industry who are working to change our lives. This publication comprises the proceedings of the first International AsiaHaptics conference, held in Tsukuba, Japan, in 2014. The book describes the state of the art of the diverse haptics- (touch-) related research, including scientific research into haptics perception and illusion, development of haptics devices, and applications for a wide variety of fields such as education, medicine, telecommunication, navigation, and entertainment.
Haptic technology refers to a technology that uses forces, vibrations, or motions to provide the user with an experience of touch. These technologies could be utilized to construct virtual objects in a computer simulation, to control virtual objects, and improve the remote control of machines and devices. Tactile sensors which measure the forces applied by the user on the interface are used in haptic devices. Steering wheels, game controllers and joysticks are examples of simple haptic devices. Haptic technology enables researchers to better understand the workings of the human sense of touch by permitting the construction of controlled haptic virtual objects. There are a wide range of applications of haptic technology including mobile devices and personal computers. This book is a valuable compilation of topics, ranging from the basic to the most complex advancements in the field of haptic technology. It will provide comprehensive knowledge to the readers.
This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility.
This book covers all topics relevant for the design of haptic interfaces and teleoperation systems. The book provides the basic knowledge required for understanding more complex approaches and more importantly it introduces all issues that must be considered for designing efficient and safe haptic interfaces. Topics covered in this book provide insight into all relevant components of a haptic system. The reader is guided from understanding the virtual reality concept to the final goal of being able to design haptic interfaces for specific tasks such as nanomanipulation. The introduction chapter positions the haptic interfaces within the virtual reality context. In order to design haptic interfaces that will comply with human capabilities at least basic understanding of human sensors-motor system is required. An overview of this topic is provided in the chapter related to human haptics. The book does not try to introduce the state-of-the-art haptic interface solutions because these tend to change quickly. Only a careful selection of different kinematic configurations is shown to introduce the reader into this field. Mathematical models of virtual environment, collision detection and force rendering topics are strongly interrelated and are described in the next two chapters. The interaction with the virtual environment is simulated with a haptic interface. Impedance and admittance based approaches to haptic robot control are presented. Stability issues of haptic interaction are analyzed in details and solutions are proposed for guaranteeing stable and safe operation. Finally, haptic interaction is extended to teleoperation systems. Virtual fixtures which improve the teleoperation and human-robot cooperation in complex environments are covered next and the last chapter presents nanomanipulation as one specific example of teleoperation.
Haptic perception – human beings’ active sense of touch – is the most complex of human sensory systems, and has taken on growing importance within varied scientific disciplines as well as in practical industrial fields. This book's international team of authors presents the most comprehensive collection of writings on the subject published to date and cover the results of research as well as practical applications. After an introduction to the theory and history of the field, subsequent chapters are dedicated to the neuro-physiological basics as well as the psychological and clinical neuro-psychological aspects of haptic perception.