Download Free Handbook Of Stretchable And Elastomeric Textiles Book in PDF and EPUB Free Download. You can read online Handbook Of Stretchable And Elastomeric Textiles and write the review.

Handbook of Stretchable and Elastomeric Textiles is a comprehensive guide to everything you need to know about elastomeric textiles, including manufacturing techniques, physical properties, processing methods, and in-use care. All types of stretchable textiles are covered, including polymers, fibers, yarns, fabrics and composites. Starting with the fundamentals of the synthesis, properties and processing of elastomeric materials, this book goes on to help the reader choose the most appropriate parameters for manufacturing and processing, as well as the best elastomeric material according to specific end use applications. In general, elastomeric textiles are difficult to handle. During the manufacturing of elastomeric fabric, the handling of yarns is complicated. In addition, the processing stage is also challenging due to the heat sensitivity of the materials that affects how they are dyed, printed, washed and dried. The specific techniques required to produce a successful elastomeric textile have been developed over many years, hence this expertise is hard to come by. - Provides foundational knowledge on the polymeric structure of elastomeric fibers - Explains how various materials can be used to prepare elastomeric fibers - Addresses how elastomerics are being used in wearables and smart textile technologies
Developments in Yarn Spinning Technologies explores the recent advancements in yarn spinning technologies, focusing on improving production and embracing sustainability. While ring spinning remains popular, newer developments in rotor spinning and natural fibre spinning systems are covered.This book also addresses challenges, including the circularity theory, providing concise insights into the evolving landscape of yarn spinning technologies. Ideal for professionals and researchers alike, this book offers valuable perspectives on the industry's dynamic changes. - Focuses on recent developments in spinning, uncovering the evolving techniques and technologies that are reshaping the yarn production industry - Addresses key technological challenges, providing practical insights into overcoming obstacles and staying ahead in the rapidly evolving field - Delves into the distinct properties of yarns, examining how technological innovations impact and enhance their characteristics for improved performance - Explores sustainable practices with a focus on recycled fibre processing
Nonmetallic electroconductive textiles, unlike metals, offer flexibility, durability, moldability, and lightweight attributes. A brilliant quality of these textiles is the capability to alter conductivity through various external stimuli (e.g., strain, torsion, pH, humidity) to suit a specific application such as sensors, heating garments, EMI shielding, energy harvesting devices, and wearable electronics. Based on these concepts, Advances in Electrically Conductive Textiles: Materials, Characterization, and Applications has been structured into three main sections. Section I contains chapters discussing the various preparation methods of electroconductive textiles, Section II contains chapters on their characteristics and features, and Section III details the end-use applications and sustainability of these textiles. - Explores strategies and methods in the development of electroconductive textile composites - ?????Investigates features of nonmetallic conductive textiles prepared from graphene, conductive polymers, MXene, and carbon nanotubes - Examines the application of electroconductive textiles for heat generation, EMI shielding, sensors, antimicrobial, filtration, energy storage, energy harvesting, and smart textiles
Flexibility and stretchability of electronics are crucial for next generation electronic devices that involve skin contact sensing and therapeutic actuation. This handbook provides a complete entrée to the field, from solid-state physics to materials chemistry, processing, devices, performance, and reliability testing, and integrated systems development. This work shows how microelectronics, signal processing, and wireless communications in the same circuitry are impacting electronics, healthcare, and energy applications. Key Features: • Covers the fundamentals to device applications, including solid-state and mechanics, chemistry, materials science, characterization techniques, and fabrication; • Offers a comprehensive base of knowledge for moving forward in this field, from foundational research to technology development; • Focuses on processing, characterization, and circuits and systems integration for device applications; • Addresses the basic physical properties and mechanics, as well as the nuts and bolts of reliability and performance analysis; • Discusses various technology applications, from printed electronics to logic and memory devices, sensors, actuators, displays, and energy storage and harvesting. This handbook will serve as the one-stop knowledge base for readership who are interested in flexible and stretchable electronics.
The second edition of Handbook of Technical Textiles, Volume 1: Technical Textile Processes provides readers with a comprehensive understanding of the latest advancements in technical textiles. With revised and updated coverage, including several new chapters, this volume reviews recent developments and technologies in the field, beginning with an overview of the technical textiles industry that includes coverage of technical fibers and yarns, weaving, spinning, knitting, and nonwoven production. Subsequent sections include discussions on finishing, coating, and the coloration of technical textiles. - Provides a comprehensive handbook for all aspects of technical textiles - Presents updated, detailed coverage of processes, fabric structure, and applications - An ideal resource for those interested in high-performance textiles, textile processes, textile processing, and textile applications - Contains contributions from many of the original, recognized experts from the first edition who update their respective chapters
This handbook systematically collects the latest scientific and technological knowledge on liquid metals obtained so far in this cutting edge frontier. Conventional materials such as metals, polymers, composites, ceramics and naturally derived matters, may not perform well when facing certain technological challenges. At around room temperature, most of such materials mainly stay at solid state and are often difficult to shape due to their high melting point. Meanwhile, although classical soft matters own good flexibility, their electrical conductivities including more behaviours appear not good enough which generally limited their utilizations. As a game-changing alternative, the room temperature liquid metal materials are quickly emerging as a new generation functional material which displayed many unconventional properties superior to traditional materials. Their outstanding versatile feature as “One material, diverse capabilities” is rather unique among existing materials and thus opens many exciting opportunities for scientific, technological and industrial developments. This handbook presents comprehensive reference information on liquid metal science and technology that are currently available. The major advancements as made before are collected and summarized. Representative liquid metal applications are illustrated. It helps readers obtain a comprehensive understanding of the technical progresses and fundamental discoveries in the frontier, and thus better explore and utilize liquid metal materials to address various challenging needs.
Functionalized nanomaterials have extremely useful properties, which can outperform their conventional counterparts because of their superior chemical, physical, and mechanical properties and exceptional formability. They are being used for the development and innovation in a range of industrial sectors. However, the use of functionalized nanomaterials is still in its infancy in many industrial settings. Functionalized nanomaterials have the potential to create cheaper and more effective consumer products and industrial processes. However, they also could have adverse effects on the environment, human health, and safety, and their sustainability is questionable, if used incorrectly. This book discusses the opportunities and challenges of using functionalized nanomaterials in a variety of major industrial sectors. Handbook of Functionalized Nanomaterials for Industrial Applications provides a concise summary of the major applications of functionalized nanomaterials in industry today. It covers the enhancements in industrial techniques and processes, due to functionalized nanomaterials, showing how they substantially improve the performance of existing procedures, and how they can deliver exciting consumer products more cheaply. Emphasis is given to greener approaches, leading to more sustainable products and devices. The legal, economical, and toxicity aspects of functionalized nanomaterials are also discussed in detail. - Highlights established industrial applications of functionalized nanomaterials and discusses their future potential for a range of industrial sectors - Discusses how functionalized nanomaterials are being used to create new types of commercial products and devices - Assesses the challenges of using functionalized nanomaterials in industry, setting out major safety and regulatory challenges
This book highlights some aspects of processing, microstructure, and properties of materials in fibrous form, or from fibers, with wide applications for textile-oriented and technically oriented advanced products. Emphasis is placed on the physical and chemical nature of the processes, describing the behavior and properties of the investigated materials. The chapters describing the state and expected trends in selected areas summarize not only the published works but also the original results and the critical evaluation and generalization of basic knowledge. In addition to the preparation of materials with new effects, attention is focused on the development of new testing principles, the construction of special devices, and metrological aspects. Research activities cover all types of fibers with a clear shift toward synthetic and specialty fibers for non-clothing applications. This is in line with the current development trend in the field of high-performance fibers, mainly for use as reinforcement in various composite materials and functional fibers for smart textiles. The area of fibrous materials covered in this book is indeed very large. Compressing the basic available information in a reasonable space was therefore a difficult task. The goal in writing this book was to provide a broad area of different results so that the book is suitable for anyone who is generally interested in fibrous materials and their applications for various purposes.
The “Handbook of Smart Textiles” aims to provide a comprehensive overview in the field of smart textile describing the state of the art in the research sector as well as the well-established techniques applied in industries. The handbook is planned to cover from fundamental theories, experimental techniques, characterization methods, as well as real applications with successful commercialized examples. The book is structured in a way in which it is appropriate for graduate students, PhD candidates, and professionals in diverse scientific and engineering communities devoted to relevant fields, including textile engineering, chemistry, bioengineering, material engineering, mechanical engineering, electrical engineering. The book will also provide a solid reference for industrial players who look for innovative technologies as well as environmental, safety concerns for the development of smart textile related products.