Download Free Handbook Of Separation Process Technology Book in PDF and EPUB Free Download. You can read online Handbook Of Separation Process Technology and write the review.

Surveys the selection, design, and operation of most of the industrially important separation processes. Discusses the underlying principles on which the processes are based, and provides illustrative examples of the use of the processes in a modern context. Features thorough treatment of newer separation processes based on membranes, adsorption, chromatography, ion exchange, and chemical complexation. Includes a review of historically important separation processes such as distillation, absorption, extraction, leaching, and crystallization and considers these techniques in light of recent developments affecting them.
Separation Process Technology is a comprehensive guide to the fundamentals, selection, applications, and installation methods of innovative separation technologies.
A separation process is a method to convert a chemical substance into two or more distinct product mixtures, at least one of which is enriched in one or more of the mixture's constituents. This text presents a comprehensive introduction to historically important separation processes such as distillation, absorption, extraction, leaching, and crystallization.
Separation processes on an industrial scale account for well over half of the capital and operating costs in the chemical industry. Knowledge of these processes is key for every student of chemical or process engineering. This book is ideally suited to university teaching, thanks to its wealth of exercises and solutions. The second edition boasts an even greater number of applied examples and case studies as well as references for further reading.
Handbook of Modern Pharmaceutical Analysis, Second Edition, synthesizes the complex research and recent changes in the field, while covering the techniques and technology required for today's laboratories. The work integrates strategy, case studies, methodologies, and implications of new regulatory structures, providing complete coverage of quality assurance from the point of discovery to the point of use. - Treats pharmaceutical analysis (PA) as an integral partner to the drug development process rather than as a service to it - Covers method development, validation, selection, testing, modeling, and simulation studies combined with advanced exploration of assays, impurity testing, biomolecules, and chiral separations - Features detailed coverage of QA, ethics, and regulatory guidance (quality by design, good manufacturing practice), as well as high-tech methodologies and technologies from "lab-on-a-chip" to LC-MS, LC-NMR, and LC-NMR-MS
This much-needed book presents a clear and very practice-oriented overview of thermal separation processes. An extensive introduction elucidates the physical and physicochemical fundamentals of different unit operations used to separate homogenous mixtures. This is followed by a concise text with numerous explanatory figures and tables referring to process and design, flowsheets, basic engineering and examples of separation process applications. Very helpful guidance in the form of process descriptions, calculation models and operation data is presented in an easy-to- understand manner thereby assisting the practicing engineer in the choosing and evaluation of separation processes and facilitating the modeling and design of innovative equipment. A comprehensive reference list provides further opportunity for the following up of special separation problems. Chemical and mechanical engineers, chemists, physicists and biotechnologists in research and development, plant design and environmental protection, as well as students in chemical engineering and natural sciences will find this all-embracing reference guide of tremendous value and practical use.
Drawing on Frank G. Kerry's more than 60 years of experience as a practicing engineer, the Industrial Gas Handbook: Gas Separation and Purification provides from-the-trenches advice that helps practicing engineers master and advance in the field. It offers detailed discussions and up-to-date approaches to process cycles for cryogenic separation of
It is generally recognized that the commercial success of biotechnology products is highly dependent on the successful development and application of high-powered separation and purification methods. In this practical and authoritative handbook, the separation of proteins, nucleic acids, and oligonucleotides from biological matrices is covered from analytical to process scales. Also included in a chapter on the separation of monoclonal antibodies, which have found numerous uses as therapeutic and diagnostic agents. Analytical techniques include an interesting montage of chromatographic methods, capillary electrophoresis, isoelectric focusing, and mass spectrometry. Among separation and purification methods, liquid-liquid distribution, displacement chromatography, expanded bed adsorption, membrane chromatography, and simulated moving bed chromatography are covered at length. Regulatory and economic considerations are addressed, as are plant and process equipment and engineering process control. A chapter on future developments highlights the application of DNA chip arrays as well as evolving methodologies for a large number of drugs that are under development for treatment of cancer, AIDS, rheumatoid arthritis, and Alzheimer's disease. Handbook of Bioseparations serves as an essential reference and guidebook for separation scientists working in the pharmaceutical and biotechnology industries, academia, and government laboratories.Key Features* Covers bioseparations of proteins, nucleic acids, and monoclonal antibodies* Encompasses both analytical and process-scale methods* Elucidates the importance of engineering process control* Details selection of plant and process equipment* Addresses economic considerations* Discusses future developments
The United States Food and Drug Administration (FDA) and other regulatory bodies around the world require that impurities in drug substance and drug product levels recommended by the International Conference on Harmonisation (ICH) be isolated and characterized. Identifying process-related impurities and degradation products also helps us to understand the production of impurities and assists in defining degradation mechanisms. When this process is performed at an early stage, there is ample time to address various aspects of drug development to prevent or control the production of impurities and degradation products well before the regulatory filing and thus assure production of a high-quality drug product.This book, therefore, has been designed to meet the need for a reference text on the complex process of isolation and characterization of process-related (synthesis and formulation) impurities and degradation products to meet critical requlatory requirements.It's objective is to provide guidance on isolating and characterizing impurities of pharmaceuticals such as drug candidates, drug substances, and drug products. The book outlines impurity identification processes and will be a key resource document for impurity analysis, isolation/synthesis, and characterization.- Provides valuable information on isolation and characterization of impurities. - Gives a regulatory perspective on the subject. - Describes various considerations involved in meeting regulatory requirements. - Discusses various sources of impurities and degredation products.