Download Free Handbook Of Scaling Methods In Aquatic Ecology Book in PDF and EPUB Free Download. You can read online Handbook Of Scaling Methods In Aquatic Ecology and write the review.

The evolution of observational instruments, simulation techniques, and computing power has given aquatic scientists a new understanding of biological and physical processes that span temporal and spatial scales. This has created a need for a single volume that addresses concepts of scale in a manner that builds bridges between experimentalists and
Ecologists sometimes have a less-than-rigorous background in quantitative methods, yet research within this broad field is becoming increasingly mathematical. Written in a step-by-step fashion, Fractals and Multifractals in Ecology and Aquatic Science provides scientists with a basic understanding of fractals and multifractals and the techniques fo
Freshwater Algae: Identification and Use as Bioindicators provides a comprehensive guide to temperate freshwater algae, with additional information on key species in relation to environmental characteristics and implications for aquatic management. The book uniquely combines practical material on techniques and water quality management with basic algal taxonomy and the role of algae as bioindicators. Freshwater Algae: Identification and Use as Bioindicators is divided into two parts. Part I describes techniques for the sampling, measuring and observation of algae and then looks at the role of algae as bioindicators and the implications for aquatic management. Part II provides the identification of major genera and 250 important species. Well illustrated with numerous original illustrations and photographs, this reference work is essential reading for all practitioners and researchers concerned with assessing and managing the aquatic environment.
Individual-based models are an exciting and widely used new tool for ecology. These computational models allow scientists to explore the mechanisms through which population and ecosystem ecology arises from how individuals interact with each other and their environment. This book provides the first in-depth treatment of individual-based modeling and its use to develop theoretical understanding of how ecological systems work, an approach the authors call "individual-based ecology.? Grimm and Railsback start with a general primer on modeling: how to design models that are as simple as possible while still allowing specific problems to be solved, and how to move efficiently through a cycle of pattern-oriented model design, implementation, and analysis. Next, they address the problems of theory and conceptual framework for individual-based ecology: What is "theory"? That is, how do we develop reusable models of how system dynamics arise from characteristics of individuals? What conceptual framework do we use when the classical differential equation framework no longer applies? An extensive review illustrates the ecological problems that have been addressed with individual-based models. The authors then identify how the mechanics of building and using individual-based models differ from those of traditional science, and provide guidance on formulating, programming, and analyzing models. This book will be helpful to ecologists interested in modeling, and to other scientists interested in agent-based modeling.
Synthèse des activités du programme national pour l'environnement côtier (PNEC) qui développe des recherches fondamentales sur les zones côtières de France métropolitaine et d'outre-mer. Les activités concernent les cycles biogéochimiques, la dynamique des populations, les efflorescences algales toxiques, facteurs hydroclimatiques et variabilité, microorganismes, gouvernance environnementale, etc.
Since the publication of The Migrations of Fish by Prof. Alexander Meek in 1916, a number of books have been published on this subject. However, most of these books only cover one type of migratory mechanisms. This book aims to overcome this drawback by presenting a comprehensive coverage of all life history strategies-potadromy, anadromy, catadrom
Dear delegates,friendsand membersofthe growingKES professionalcommunity,w- come to the proceedings of the 9th International Conference on Knowledge-Based and IntelligentInformationandEngineeringSystemshostedbyLa TrobeUniversityin M- bourne Australia. The KES conference series has been established for almost a decade, and it cont- ues each year to attract participants from all geographical areas of the world, including Europe, the Americas, Australasia and the Paci?c Rim. The KES conferences cover a wide range of intelligent systems topics. The broad focus of the conference series is the theory and applications of intelligent systems. From a pure research ?eld, intel- gent systems have advanced to the point where their abilities have been incorporated into many business and engineering application areas. KES 2005 provided a valuable mechanism for delegates to obtain an extensive view of the latest research into a range of intelligent-systems algorithms, tools and techniques. The conference also gave de- gates the chance to come into contact with those applying intelligent systems in diverse commercial areas. The combination of theory and practice represented a unique opp- tunity to gain an appreciation of the full spectrum of leading-edge intelligent-systems activity. The papers for KES 2005 were either submitted to invited sessions, chaired and organized by respected experts in their ?elds, or to a general session, managed by an extensive International Program Committee, or to the Intelligent Information Hiding and Multimedia Signal Processing (IIHMSP) Workshop, managed by an International Workshop Technical Committee.
Quantitative methods specifically tailored for the marine biologist While there are countless texts published on quantitative methods and many texts that cover quantitative terrestrial ecology, this text fills the need for the special quantitative problems confronting marine biologists and biological oceanographers. The author combines common quantitative techniques with recent advances in quantitative methodology and then demonstrates how these techniques can be used to study marine organisms, their behaviors, and their interactions with the environment. Readers learn how to better design experiments and sampling, employ sophisticated mathematical techniques, and accurately interpret and communicate the results. Most of this text is written at an introductory level, with a few topics that advance to more complex themes. Among the topics covered are plot/plotless sampling, biometrics, experimental design, game theory, optimization, time trends, modeling, and environmental impact assessments. Even readers new to quantitative methods will find the material accessible, with plenty of features to engage their interest, promote learning, and put their knowledge into practice: * One or more examples are provided to illustrate each individual quantitative technique presented in the text * The accompanying CD-ROM features two multimedia programs, several statistical programs, help to run complex statistical programs, and additional information amplifying topics covered in the text * References lead readers to additional information to pursue individual topics in greater depth Quantitative Analysis of Marine Biological Communities, with its extensive use of examples, is ideal for undergraduate and graduate students in marine biology. Marine biologists, regardless of their level of experience, will also discover new approaches to quantitative analysis tailored to the particular needs of their field.
Stock Identification Methods, 2e, continues to provide a comprehensive review of the various disciplines used to study the population structure of fishery resources. It represents the worldwide experience and perspectives of experts on each method, assembled through a working group of the International Council for the Exploration of the Sea. The book is organized to foster interdisciplinary analyses and conclusions about stock structure, a crucial topic for fishery science and management. Technological advances have promoted the development of stock identification methods in many directions, resulting in a confusing variety of approaches. Based on central tenets of population biology and management needs, this valuable resource offers a unified framework for understanding stock structure by promoting an understanding of the relative merits and sensitivities of each approach. - Describes 18 distinct approaches to stock identification grouped into sections on life history traits, environmental signals, genetic analyses, and applied marks - Features experts' reviews of benchmark case studies, general protocols, and the strengths and weaknesses of each identification method - Reviews statistical techniques for exploring stock patterns, testing for differences among putative stocks, stock discrimination, and stock composition analysis - Focuses on the challenges of interpreting data and managing mixed-stock fisheries
This volume highlights recent advances that have contributed to our understanding of spatial patterns and scale issues in microbial ecology. The book brings together research conducted at a range of spatial scales (from μm to km) and in a variety of different types of environments. These topics are addressed in a quantitative manner, and a primer on statistical methods is included. In soil ecosystems, both bacteria and fungi are discussed.