Download Free Handbook Of Rf And Microwave Power Amplifiers Book in PDF and EPUB Free Download. You can read online Handbook Of Rf And Microwave Power Amplifiers and write the review.

This is a one-stop guide for circuit designers and system/device engineers, covering everything from CAD to reliability.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. The latest power amp design methods Fully updated to address cutting-edge technologies, the new edition of this practical guide provides comprehensive, state-of-the-art coverage of RF and microwave power amplifier design. The book describes both existing and new schematic configurations, theoretical approaches, circuit simulation results, and implementation techniques. New chapters discuss linearization and efficiency enhancement and high-efficiency Doherty power amplifiers. Featuring a systematic approach, this comprehensive resource bridges the theory and practice of RF and microwave engineering. RF and Microwave Power Amplifier Design, Second Edition, covers: Two-port network parameters and passive elements Nonlinear circuit design methods Nonlinear active device modeling Impedance matching Power transformers, combiners, and couplers Power amplifier design fundamentals High-efficiency power amplifier design Broadband power amplifiers Linearization and efficiency enhancement techniques High-efficiency Doherty power amplifiers
By 1990 the wireless revolution had begun. In late 2000, Mike Golio gave the world a significant tool to use in this revolution: The RF and Microwave Handbook. Since then, wireless technology spread across the globe with unprecedented speed, fueled by 3G and 4G mobile technology and the proliferation of wireless LANs. Updated to reflect this tremendous growth, the second edition of this widely embraced, bestselling handbook divides its coverage conveniently into a set of three books, each focused on a particular aspect of the technology. Six new chapters cover WiMAX, broadband cable, bit error ratio (BER) testing, high-power PAs (power amplifiers), heterojunction bipolar transistors (HBTs), as well as an overview of microwave engineering. Over 100 contributors, with diverse backgrounds in academic, industrial, government, manufacturing, design, and research reflect the breadth and depth of the field. This eclectic mix of contributors ensures that the coverage balances fundamental technical issues with the important business and marketing constraints that define commercial RF and microwave engineering. Focused chapters filled with formulas, charts, graphs, diagrams, and tables make the information easy to locate and apply to practical cases. The new format, three tightly focused volumes, provides not only increased information but also ease of use. You can find the information you need quickly, without wading through material you don’t immediately need, giving you access to the caliber of data you have come to expect in a much more user-friendly format.
Solid state power amplifiers (SSPA) are a critical part of many microwave systems. Designing SSPAs with monolithic microwave integrated circuits (MMIC) has boosted device performance to much higher levels focused on PA modules. This cutting-edge book offers engineers practical guidance in selecting the best power amplifier module for a particular application and interfacing the selected module with other power amplifier modules in the system. It also explains how to identify and mitigate peripheral issues concerning the PA modules, SSPAs, and microwave systems. This authoritative volume presents the critical techniques and underpinnings of SSPA design, enabling professionals to optimize device and system performance. Engineers gain the knowledge they need to evaluate the optimum topologies for the design of a chain of microwave devices, including power amplifiers. Additionally, the book addresses the interface between the microwave subsystems and the primary DC power, the control and monitoring circuits, and the thermal and EMI paths. Packed with 240 illustrations and over 430 equations, this detailed book provides the practical tools engineers need for their challenging projects in the field.
Switchmode RF and Microwave Power Amplifiers, Third Edition is an essential reference book on developing RF and microwave switchmode power amplifiers. The book combines theoretical discussions with practical examples, allowing readers to design high-efficiency RF and microwave power amplifiers on different types of bipolar and field-effect transistors, design any type of high-efficiency switchmode power amplifiers operating in Class D or E at lower frequencies and in Class E or F and their subclasses at microwave frequencies with specified output power, also providing techniques on how to design multiband and broadband Doherty amplifiers using different bandwidth extension techniques and implementation technologies. This book provides the necessary information to understand the theory and practical implementation of load-network design techniques based on lumped and transmission-line elements. It brings a unique focus on switchmode RF and microwave power amplifiers that are widely used in cellular/wireless, satellite and radar communication systems which offer major power consumption savings. Provides a complete history of high-efficiency Class E and Class F techniques Presents a new chapter on Class E with shunt capacitance and shunt filter to simplify the design of high-efficiency power amplifier with broader frequency bandwidths Covers different Doherty architectures, including integrated and monolithic implementations, which are and will be, used in modern communication systems to save power consumption and to reduce size and costs Includes extended coverage of multiband and broadband Doherty amplifiers with different frequency ranges and output powers using different bandwidth extension techniques Balances theory with practical implementation, avoiding a cookbook approach and enabling engineers to develop better designs, including hybrid, integrated and monolithic implementations
This is a rigorous tutorial on radio frequency and microwave power amplifier design, teaching the circuit design techniques that form the microelectronic backbones of modern wireless communications systems. Suitable for self-study, corporate training, or Senior/Graduate classroom use, the book combines analytical calculations and computer-aided design techniques to arm electronic engineers with every possible method to improve their designs and shorten their design time cycles.
This second edition of the highly acclaimed RF Power Amplifiers has been thoroughly revised and expanded to reflect the latest challenges associated with power transmitters used in communications systems. With more rigorous treatment of many concepts, the new edition includes a unique combination of class-tested analysis and industry-proven design techniques. Radio frequency (RF) power amplifiers are the fundamental building blocks used in a vast variety of wireless communication circuits, radio and TV broadcasting transmitters, radars, wireless energy transfer, and industrial processes. Through a combination of theory and practice, RF Power Amplifiers, Second Edition provides a solid understanding of the key concepts, the principle of operation, synthesis, analysis, and design of RF power amplifiers. This extensive update boasts: up to date end of chapter summaries; review questions and problems; an expansion on key concepts; new examples related to real-world applications illustrating key concepts and brand new chapters covering ‘hot topics’ such as RF LC oscillators and dynamic power supplies. Carefully edited for superior readability, this work remains an essential reference for research & development staff and design engineers. Senior level undergraduate and graduate electrical engineering students will also find it an invaluable resource with its practical examples & summaries, review questions and end of chapter problems. Key features: • A fully revised solutions manual is now hosted on a companion website alongside new simulations. • Extended treatment of a broad range of topologies of RF power amplifiers. • In-depth treatment of state-of-the art of modern transmitters and a new chapter on oscillators. • Includes problem-solving methodology, step-by-step derivations and closed-form design equations with illustrations.
A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help readers test their basic amplifier and circuit design skills-and more than half of the problems feature fully worked-out solutions. With an emphasis on theory, design, and everyday applications, this book is geared toward students, teachers, scientists, and practicing engineers who are interested in broadening their knowledge of RF and microwave transistor amplifier circuit design.
Broadband RF and Microwave Amplifiers provides extensive coverage of broadband radio frequency (RF) and microwave power amplifier design, including well-known historical and recent novel schematic configurations, theoretical approaches, circuit simulation results, and practical implementation strategies. The text begins by introducing two-port networks to illustrate the behavior of linear and nonlinear circuits, explaining the basic principles of power amplifier design, and discussing impedance matching and broadband power amplifier design using lumped and distributed parameters. The book then: Shows how dissipative or lossy gain-compensation-matching circuits can offer an important trade-off between power gain, reflection coefficient, and operating frequency bandwidth Describes the design of broadband RF and microwave amplifiers using real frequency techniques (RFTs), supplying numerous examples based on the MATLAB® programming process Examines Class-E power amplifiers, Doherty amplifiers, low-noise amplifiers, microwave gallium arsenide field-effect transistor (GaAs FET)-distributed amplifiers, and complementary metal-oxide semiconductor (CMOS) amplifiers for ultra-wideband (UWB) applications Broadband RF and Microwave Amplifiers combines theoretical analysis with practical design to create a solid foundation for innovative ideas and circuit design techniques.