Download Free Handbook Of Research On Pattern Engineering System Development For Big Data Analytics Book in PDF and EPUB Free Download. You can read online Handbook Of Research On Pattern Engineering System Development For Big Data Analytics and write the review.

Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries. It is necessary to develop new techniques for managing data in order to ensure adequate usage. The Handbook of Research on Pattern Engineering System Development for Big Data Analytics is a critical scholarly resource that examines the incorporation of pattern management in business technologies as well as decision making and prediction process through the use of data management and analysis. Featuring coverage on a broad range of topics such as business intelligence, feature extraction, and data collection, this publication is geared towards professionals, academicians, practitioners, and researchers seeking current research on the development of pattern management systems for business applications.
The increase in connected devices in the internet of things (IoT) is leading to an exponential increase in the data that an organization is required to manage. To successfully utilize IoT in businesses, big data analytics are necessary in order to efficiently sort through the increased data. The combination of big data and IoT can thus enable new monitoring services and powerful processing of sensory data streams. The Handbook of Research on Big Data and the IoT is a pivotal reference source that provides vital research on emerging trends and recent innovative applications of big data and IoT, challenges facing organizations and the implications of these technologies on society, and best practices for their implementation. While highlighting topics such as bootstrapping, data fusion, and graph mining, this publication is ideally designed for IT specialists, managers, policymakers, analysts, software engineers, academicians, and researchers.
Healthcare sectors often deal with a large amount of data related to patients’ care and hospital workforce management. Mistakes occur, and the impending results are disastrous for individuals’ personal identity information. However, an innovative and reliable way to safeguard the identity of individuals and provide protection of medical records from criminals is already in effect. Design and Implementation of Healthcare Biometric Systems provides innovative insights into medical identity theft and the benefits behind biometrics technologies that could be offered to protect medical records from hackers and malicious users. The content within this publication represents the work of ASD screening systems, healthcare management, and patient rehabilitation. It is designed for educators, researchers, faculty members, industry practitioners, graduate students, and professionals working with healthcare services and covers topics centered on understanding the practical essence of next-generation healthcare biometrics systems and future research directions.
While doctors and physicians are more than capable of detecting diseases of the brain, the most agile human mind cannot compete with the processing power of modern technology. Utilizing algorithmic systems in healthcare in this way may provide a way to treat neurological diseases before they happen. Early Detection of Neurological Disorders Using Machine Learning Systems provides innovative insights into implementing smart systems to detect neurological diseases at a faster rate than by normal means. The topics included in this book are artificial intelligence, data analysis, and biomedical informatics. It is designed for clinicians, doctors, neurologists, physiotherapists, neurorehabilitation specialists, scholars, academics, and students interested in topics centered on biomedical engineering, bio-electronics, medical electronics, physiology, neurosciences, life sciences, and physics.
Because trainees need to learn about the underlying technologies to use automation safely and efficiently, the development of automated aviation systems training is a growing challenge. Task analysis has been singled out as the basis of the training, but it can be more time-consuming than traditional development techniques. Cases on Modern Computer Systems in Aviation is an essential reference source that covers new information technology use in aviation systems to streamline the cybersecurity, decision-making, planning, and design processes within the aviation industry. Featuring coverage on a broad range of topics such as computer systems in aviation, artificial intelligence, software-defined networking (SDN), air navigation systems, decision support systems (DSS), and more, this publication is ideally designed for aviation specialists and industry professionals, technicians, practitioners, researchers, and academicians seeking current research on modern modeling approaches to streamline management in aviation.
As industries are rapidly being digitalized and information is being more heavily stored and transmitted online, the security of information has become a top priority in securing the use of online networks as a safe and effective platform. With the vast and diverse potential of artificial intelligence (AI) applications, it has become easier than ever to identify cyber vulnerabilities, potential threats, and the identification of solutions to these unique problems. The latest tools and technologies for AI applications have untapped potential that conventional systems and human security systems cannot meet, leading AI to be a frontrunner in the fight against malware, cyber-attacks, and various security issues. However, even with the tremendous progress AI has made within the sphere of security, it’s important to understand the impacts, implications, and critical issues and challenges of AI applications along with the many benefits and emerging trends in this essential field of security-based research. Research Anthology on Artificial Intelligence Applications in Security seeks to address the fundamental advancements and technologies being used in AI applications for the security of digital data and information. The included chapters cover a wide range of topics related to AI in security stemming from the development and design of these applications, the latest tools and technologies, as well as the utilization of AI and what challenges and impacts have been discovered along the way. This resource work is a critical exploration of the latest research on security and an overview of how AI has impacted the field and will continue to advance as an essential tool for security, safety, and privacy online. This book is ideally intended for cyber security analysts, computer engineers, IT specialists, practitioners, stakeholders, researchers, academicians, and students interested in AI applications in the realm of security research.
This book highlights how optimized big data applications can be used for patient monitoring and clinical diagnosis. In fact, IoT-based applications are data-driven and mostly employ modern optimization techniques. The book also explores challenges, opportunities, and future research directions, discussing the stages of data collection and pre-processing, as well as the associated challenges and issues in data handling and setup.
Advances in computing, communications, and control have bridged the physical components of reality and cyberspace leading to the smart internet of things (IoT). The notion of IoT has extraordinary significance for the future of several industrial domains. Hence, it is expected that the complexity in the design of IoT applications will continue to increase due to the integration of several cyber components with physical and industrial systems. As a result, several smart protocols and algorithms are needed to communicate and exchange data between IoT devices. Smart Devices, Applications, and Protocols for the IoT is a collection of innovative research that explores new methods and techniques for achieving reliable and efficient communication in recent applications including machine learning, network optimization, adaptive methods, and smart algorithms and protocols. While highlighting topics including artificial intelligence, sensor networks, and mobile network architectures, this book is ideally designed for IT specialists and consultants, software engineers, technology developers, academicians, researchers, and students seeking current research on up-to-date technologies in smart communications, protocols, and algorithms in IoT.
The ever-evolving wireless technology industry is demanding new technologies and standards to ensure a higher quality of experience for global end-users. This developing challenge has enabled researchers to identify the present trend of machine learning as a possible solution, but will it meet business velocity demand? Next-Generation Wireless Networks Meet Advanced Machine Learning Applications is a pivotal reference source that provides emerging trends and insights into various technologies of next-generation wireless networks to enable the dynamic optimization of system configuration and applications within the fields of wireless networks, broadband networks, and wireless communication. Featuring coverage on a broad range of topics such as machine learning, hybrid network environments, wireless communications, and the internet of things; this publication is ideally designed for industry experts, researchers, students, academicians, and practitioners seeking current research on various technologies of next-generation wireless networks.
The results of computational model simulations allow researchers and clinicians to make predictions about what will happen in the biological systems that are being studied in response to changing conditions for a disease or disorder. With a well-developed computational model, researchers and clinicians can better understand the cause of a disease or a disorder and predict treatment results. Computational Models for Biomedical Reasoning and Problem Solving is a critical scholarly publication that provides insightful strategies to developing computational models that allow for the better understanding and treatment of various diseases and disorders. Featuring topics such as biomedicine, neuroscience, and artificial intelligence, this book is ideal for practitioners, clinicians, researchers, psychologists, and engineers.