Download Free Handbook Of Research On Novel Soft Computing Intelligent Algorithms Book in PDF and EPUB Free Download. You can read online Handbook Of Research On Novel Soft Computing Intelligent Algorithms and write the review.

"This book explores emerging technologies and best practices designed to effectively address concerns inherent in properly optimizing advanced systems, demonstrating applications in areas such as bio-engineering, space exploration, industrial informatics, information security, and nuclear and renewable energies"--Provided by publisher.
Soft computing and nature-inspired computing both play a significant role in developing a better understanding to machine learning. When studied together, they can offer new perspectives on the learning process of machines. The Handbook of Research on Soft Computing and Nature-Inspired Algorithms is an essential source for the latest scholarly research on applications of nature-inspired computing and soft computational systems. Featuring comprehensive coverage on a range of topics and perspectives such as swarm intelligence, speech recognition, and electromagnetic problem solving, this publication is ideally designed for students, researchers, scholars, professionals, and practitioners seeking current research on the advanced workings of intelligence in computing systems.
Modern optimization approaches have attracted many research scientists, decision makers and practicing researchers in recent years as powerful intelligent computational techniques for solving several complex real-world problems. The Handbook of Research on Modern Optimization Algorithms and Applications in Engineering and Economics highlights the latest research innovations and applications of algorithms designed for optimization applications within the fields of engineering, IT, and economics. Focusing on a variety of methods and systems as well as practical examples, this book is a significant resource for graduate-level students, decision makers, and researchers in both public and private sectors who are seeking research-based methods for modeling uncertain real-world problems. .
For decades, optimization methods such as Fuzzy Logic, Artificial Neural Networks, Firefly, Simulated annealing, and Tabu search, have been capable of handling and tackling a wide range of real-world application problems in society and nature. Analysts have turned to these problem-solving techniques in the event during natural disasters and chaotic systems research. The Handbook of Research on Artificial Intelligence Techniques and Algorithms highlights the cutting edge developments in this promising research area. This premier reference work applies Meta-heuristics Optimization (MO) Techniques to real world problems in a variety of fields including business, logistics, computer science, engineering, and government. This work is particularly relevant to researchers, scientists, decision-makers, managers, and practitioners.
Modern optimization approaches have attracted an increasing number of scientists, decision makers, and researchers. As new issues in this field emerge, different optimization methodologies must be developed and implemented. The Handbook of Research on Emergent Applications of Optimization Algorithms is an authoritative reference source for the latest scholarly research on modern optimization techniques for solving complex problems of global optimization and their applications in economics and engineering. Featuring coverage on a broad range of topics and perspectives such as hybrid systems, non-cooperative games, and cryptography, this publication is ideally designed for students, researchers, and engineers interested in emerging developments in optimization algorithms.
To maintain a healthy ecosystem for contemporary society and for future generations, policies must be implemented to protect the environment. This can be achieved by consistent evaluation of new initiatives and strategies. The Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development is a critical scholarly resource that examines efficient use of electric resources and renewable energy sources which have a positive impact on sustainable development. Featuring coverage on cogeneration thermal modules, photovoltaic (pv) solar, and renewable energy systems (RES) application practices, this publication is geared towards academics, practitioners, professionals, and upper-level students interested in the latest research on renewable energy and electric resources for sustainable rural development.
As technology spreads globally, researchers and scientists continue to develop and study the strategy behind creating artificial life. This research field is ever expanding, and it is essential to stay current in the contemporary trends in artificial life, artificial intelligence, and machine learning. This an important topic for researchers and scientists in the field as well as industry leaders who may adapt this technology. The Handbook of Research on New Investigations in Artificial Life, AI, and Machine Learning provides concepts, theories, systems, technologies, and procedures that exhibit properties, phenomena, or abilities of any living system or human. This major reference work includes the most up-to-date research on techniques and technologies supporting AI and machine learning. Covering topics such as behavior classification, quality control, and smart medical devices, it serves as an essential resource for graduate students, academicians, stakeholders, practitioners, and researchers and scientists studying artificial life, cognition, AI, biological inspiration, machine learning, and more.
Using the same strategy for the needs of image processing and pattern recognition, scientists and researchers have turned to computational intelligence for better research throughputs and end results applied towards engineering, science, business and financial applications. Handbook of Research on Computational Intelligence for Engineering, Science, and Business discusses the computation intelligence approaches, initiatives and applications in the engineering, science and business fields. This reference aims to highlight computational intelligence as no longer limited to computing-related disciplines and can be applied to any effort which handles complex and meaningful information.