Download Free Handbook Of Research On Computational Intelligence Applications In Bioinformatics Book in PDF and EPUB Free Download. You can read online Handbook Of Research On Computational Intelligence Applications In Bioinformatics and write the review.

Developments in the areas of biology and bioinformatics are continuously evolving and creating a plethora of data that needs to be analyzed and decrypted. Since it can be difficult to decipher the multitudes of data within these areas, new computational techniques and tools are being employed to assist researchers in their findings. The Handbook of Research on Computational Intelligence Applications in Bioinformatics examines emergent research in handling real-world problems through the application of various computation technologies and techniques. Featuring theoretical concepts and best practices in the areas of computational intelligence, artificial intelligence, big data, and bio-inspired computing, this publication is a critical reference source for graduate students, professionals, academics, and researchers.
"This book offers information on the state-of-the-art development in the fields of computational biology and systems biology, presenting methods, tools, and applications of these fields by many leading experts around the globe"--Provided by publisher.
"This book focuses on methods widely used in modeling gene networks including structure discovery, learning, and optimization"--Provided by publisher.
Applications of Computational Intelligence in Multi-Disciplinary Research provides the readers with a comprehensive handbook for applying the powerful principles, concepts, and algorithms of computational intelligence to a wide spectrum of research cases. The book covers the main approaches used in computational intelligence, including fuzzy logic, neural networks, evolutionary computation, learning theory, and probabilistic methods, all of which can be collectively viewed as soft computing. Other key approaches included are swarm intelligence and artificial immune systems. These approaches provide researchers with powerful tools for analysis and problem-solving when data is incomplete and when the problem under consideration is too complex for standard mathematics and the crisp logic approach of Boolean computing. - Provides an overview of the key methods of computational intelligence, including fuzzy logic, neural networks, evolutionary computation, learning theory, and probabilistic methods - Includes case studies and real-world examples of computational intelligence applied in a variety of research topics, including bioinformatics, biomedical engineering, big data analytics, information security, signal processing, machine learning, nanotechnology, and optimization techniques - Presents a thorough technical explanation on how computational intelligence is applied that is suitable for a wide range of multidisciplinary and interdisciplinary research
Bioinformatics is contributing to some of the most important advances in medicine and biology. At the forefront of this exciting new subject are techniques known as artificial intelligence which are inspired by the way in which nature solves the problems it faces. This book provides a unique insight into the complex problems of bioinformatics and the innovative solutions which make up ‘intelligent bioinformatics’. Intelligent Bioinformatics requires only rudimentary knowledge of biology, bioinformatics or computer science and is aimed at interested readers regardless of discipline. Three introductory chapters on biology, bioinformatics and the complexities of search and optimisation equip the reader with the necessary knowledge to proceed through the remaining eight chapters, each of which is dedicated to an intelligent technique in bioinformatics. The book also contains many links to software and information available on the internet, in academic journals and beyond, making it an indispensable reference for the 'intelligent bioinformatician'. Intelligent Bioinformatics will appeal to all postgraduate students and researchers in bioinformatics and genomics as well as to computer scientists interested in these disciplines, and all natural scientists with large data sets to analyse.
"This book explores the complex world of computational intelligence, which utilizes computational methodologies such as fuzzy logic systems, neural networks, and evolutionary computation for the purpose of managing and using data effectively to address complicated real-world problems"--
Handbook of Computational Intelligence in Biomedical Engineering and Healthcare helps readers analyze and conduct advanced research in specialty healthcare applications surrounding oncology, genomics and genetic data, ontologies construction, bio-memetic systems, biomedical electronics, protein structure prediction, and biomedical data analysis. The book provides the reader with a comprehensive guide to advanced computational intelligence, spanning deep learning, fuzzy logic, connectionist systems, evolutionary computation, cellular automata, self-organizing systems, soft computing, and hybrid intelligent systems in biomedical and healthcare applications. Sections focus on important biomedical engineering applications, including biosensors, enzyme immobilization techniques, immuno-assays, and nanomaterials for biosensors and other biomedical techniques. Other sections cover gene-based solutions and applications through computational intelligence techniques and the impact of nonlinear/unstructured data on experimental analysis. - Presents a comprehensive handbook that covers an Introduction to Computational Intelligence in Biomedical Engineering and Healthcare, Computational Intelligence Techniques, and Advanced and Emerging Techniques in Computational Intelligence - Helps readers analyze and do advanced research in specialty healthcare applications - Includes links to websites, videos, articles and other online content to expand and support primary learning objectives
""This book provides vital research on theory analysis, improvements, and applications of fireworks algorithm. While highlighting topics such as convergence rate, parameter applications, and global optimization analysis, this publication explores up-to-date progress on the specific techniques of this algorithm"--Provided by publisher"--
An invaluable tool in Bioinformatics, this unique volume provides both theoretical and experimental results, and describes basic principles of computational intelligence and pattern analysis while deepening the reader's understanding of the ways in which these principles can be used for analyzing biological data in an efficient manner. This book synthesizes current research in the integration of computational intelligence and pattern analysis techniques, either individually or in a hybridized manner. The purpose is to analyze biological data and enable extraction of more meaningful information and insight from it. Biological data for analysis include sequence data, secondary and tertiary structure data, and microarray data. These data types are complex and advanced methods are required, including the use of domain-specific knowledge for reducing search space, dealing with uncertainty, partial truth and imprecision, efficient linear and/or sub-linear scalability, incremental approaches to knowledge discovery, and increased level and intelligence of interactivity with human experts and decision makers Chapters authored by leading researchers in CI in biology informatics. Covers highly relevant topics: rational drug design; analysis of microRNAs and their involvement in human diseases. Supplementary material included: program code and relevant data sets correspond to chapters.
This book constitutes the thoroughly refereed post-conference proceedings of the 14th International Meeting on Computational. Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2017, held in Cagliari, Italy, in September 2017. The 19 revised full papers presented were carefully reviewed and selected from 44 submissions. The papers deal with the application of computational intelligence to open problems in bioinformatics, biostatistics, systems and synthetic biology, medical informatics, computational approaches to life sciences in general.