Download Free Handbook Of Refractory Carbides Nitrides Book in PDF and EPUB Free Download. You can read online Handbook Of Refractory Carbides Nitrides and write the review.

Refractory carbides and nitrides are useful materials with numerous industrial applications and a promising future, in addition to being materials of great interest to the scientific community. Although most of their applications are recent, the refractory carbides and nitrides have been known for over one hundred years. The industrial importance of the refractory carbides and nitrides is growing rapidly, not only in the traditional and well-established applications based on the strength and refractory nature of these materials such as cutting tools and abrasives, but also in new and promising fields such as electronics and optoelectronics.
The main objective of this book is to: (1) provide a complete review of the structures and properties of refractory carbides and nitrides; (2) provide a thorough assessment of the technology, processing, and equipment and systems used in production and R&D, with emphasis on advanced designs; and (3) identify and describe the applications, particularly new and emerging areas.
Carbide, Nitride and Boride Materials Synthesis and Processing is a major reference text addressing methods for the synthesis of non-oxides. Each chapter has been written by an expert practising in the subject area, affiliated with industry, academia or government research, thus providing a broad perspective of information for the reader. The subject matter ranges from materials properties and applications to methods of synthesis including pre- and post-synthesis processing. Although most of the text is concerned with the synthesis of powders, chapters are included for other materials such as whiskers, platelets, fibres and coatings. Carbide, Nitride and Boride Materials Synthesis and Processing is a comprehensive overview of the subject and is suitable for practitioners in the industry as well as those looking for an introduction to the field. It will be of interest to chemical, mechanical and ceramic engineers, materials scientists and chemists in both university and industrial environments working on or with refractory carbides, nitrides and borides.
Deals with the influence of stoiciometry and order/disorder on materials properties. It summarizes the knowledge available in a comprehensive way.
This open access book relates to the III Annual Conference hosted by The Ministry of Education and Science of the Russian Federation in December 2016. This event has summarized, analyzed and discussed the interim results, academic outputs and scientific achievements of the Russian Federal Targeted Programme “Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014–2020.” It contains 75 selected papers from 6 areas considered priority by the Federal Targeted Programme: computer science, ecology & environment sciences; energy and energy efficiency; lifesciences; nanoscience & nanotechnology and transport & communications. The chapters report the results of the 3-years research projects supported by the Programme and finalized in 2016.
This exhaustive work in three volumes and over 1300 pages provides a thorough treatment of ultra-high temperature materials with melting points over 2500 °C. The first volume focuses on Carbon and Refractory Metals, whilst the second and third are dedicated solely to Refractory compounds and the third to Refractory Alloys and Composites respectively. Topics included are physical (crystallographic, thermodynamic, thermo physical, electrical, optical, physico-mechanical, nuclear) and chemical (solid-state diffusion, interaction with chemical elements and compounds, interaction with gases, vapours and aqueous solutions) properties of the individual physico-chemical phases of carbon (graphite/graphene), refractory metals (W, Re, Os, Ta, Mo, Nb, Ir) and compounds (oxides, nitrides, carbides, borides, silicides) with melting points in this range. It will be of interest to researchers, engineers, postgraduate, graduate and undergraduate students alike. The reader is provided with the full qualitative and quantitative assessment for the materials, which could be applied in various engineering devices and environmental conditions at ultra-high temperatures, on the basis of the latest updates in the field of physics, chemistry, materials science and engineering.
This book, as the fourth volume, continues on ultra-high temperature materials with melting (sublimation or decomposition) points around or over 2500 °C. In this quality the book has over-branched cross-links with the sections and tables of the previous Volumes I-III. Similarly to Volumes I-III, the book includes a thorough treatment of the physical and chemical properties of ultra-high temperature materials, namely such as W semi- and monocarbides, and continues the description of refractory carbides, which was begun from Volume II of the series. The book will be of interest to researchers, engineers, postgraduate, graduate and undergraduate students alike. The readers are provided with the full qualitative and quantitative assessment, which is based on the latest updates in the field of fundamental physics and chemistry, nanotechnology, materials science, design and engineering.
Cutting edge high temperature materials include high temperature superconductors, solid oxide fuel cells, thermoelectric materials and ultrahigh temperature construction materials (including metals, cermets and ceramics) and have applications in key areas such as energy, transportation and space technologies. This book introduces the concepts which underpin research into these critical materials including thermodynamics, kinetics and various physical, chemical and modelling techniques with a focus on practical “how to” methods and covers: Introduction to High Temperature Research Basic Design of High Temperature Furnaces Temperature Measurement Radiation Pyrometry Refractory Materials in the Laboratory Vacuum in Theory and Practice The Design of Vacuum Furnaces and Thermobalances With highly detailed instrument illustrations and an emphasis on the control and measurement of the fundamental properties of temperature, pressure and mass, High Temperature Experiments in Chemistry and Materials Science provides a practical reference on high temperature measurements, for researchers, advanced students and those working in academic or industrial laboratories. Introduction to High Temperature Research Basic Design of High Temperature Furnaces Temperature Measurement Radiation Pyrometry Refractory Materials in the Laboratory Vacuum in Theory and Practice The Design of Vacuum Furnaces and Thermobalances
This exhaustive work in several volumes and over 2500 pages provides a thorough treatment of ultra-high temperature materials (with melting points around or over 2500 °C). The first volume focuses on carbon (graphene/graphite) and refractory metals (W, Re, Os, Ta, Mo, Nb and Ir), whilst the second and third are dedicated to refractory transition metal 4-5 groups carbides. Topics included are physical (structural, thermal, electro-magnetic, optical, mechanical, nuclear) and chemical (more than 3000 binary, ternary and multi-component systems, including those used for materials design, data on solid-state diffusion, wettability, interaction with various elements and compounds in solid and liquid states, gases and chemicals in aqueous solutions) properties of these materials. It will be of interest to researchers, engineers, postgraduate, graduate and undergraduate students alike. The readers/users are provided with the full qualitative and quantitative assessment, which is based on the latest updates in the field of fundamental physics and chemistry, nanotechnology, materials science, design and engineering.
Turn to this new second edition for an understanding of the latest advances in the chemical vapor deposition (CVD) process. CVD technology has recently grown at a rapid rate, and the number and scope of its applications and their impact on the market have increased considerably. The market is now estimated to be at least double that of a mere seven years ago when the first edition of this book was published. The second edition is an update with a considerably expanded and revised scope. Plasma CVD and metallo-organic CVD are two major factors in this rapid growth. Readers will find the latest data on both processes in this volume. Likewise, the book explains the growing importance of CVD in production of semiconductor and related applications.