Download Free Handbook Of Optoelectronic Device Modeling And Simulation Book in PDF and EPUB Free Download. You can read online Handbook Of Optoelectronic Device Modeling And Simulation and write the review.

Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. Gives a broad overview of concepts with concise explanations illustrated by real results. Compares different levels of modeling, from simple analytical models to complex numerical models. Discusses practical methods of model validation. Includes an overview of numerical techniques.
"Optoelectronic devices are now ubiquitous in our daily lives, from light emitting diodes (LEDs) in many household appliances to solar cells for energy. This handbook shows how we can probe the underlying and highly complex physical processes using modern mathematical models and numerical simulation for optoelectronic device design, analysis, and performance optimization. It reflects the wide availability of powerful computers and advanced commercial software, which have opened the door for non-specialists to perform sophisticated modeling and simulation tasks. The chapters comprise the know-how of more than a hundred experts from all over the world. The handbook is an ideal starting point for beginners but also gives experienced researchers the opportunity to renew and broaden their knowledge in this expanding field."--Provided by publisher.
• Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. • Gives a broad overview of concepts with concise explanations illustrated by real results. • Compares different levels of modeling, from simple analytical models to complex numerical models. • Discusses practical methods of model validation. • Includes an overview of numerical techniques.
"Optoelectronic devices are now ubiquitous in our daily lives, from light emitting diodes (LEDs) in many household appliances to solar cells for energy. This handbook shows how we can probe the underlying and highly complex physical processes using modern mathematical models and numerical simulation for optoelectronic device design, analysis, and performance optimization. It reflects the wide availability of powerful computers and advanced commercial software, which have opened the door for non-specialists to perform sophisticated modeling and simulation tasks. The chapters comprise the know-how of more than a hundred experts from all over the world. The handbook is an ideal starting point for beginners but also gives experienced researchers the opportunity to renew and broaden their knowledge in this expanding field."--Provided by publisher.
"a very valuable book for graduate students and researchers in the field of Laser Spectroscopy, which I can fully recommend" —Wolfgang Demtröder, Kaiserslautern University of Technology How would it be possible to provide a coherent picture of this field given all the techniques available today? The authors have taken on this daunting task in this impressive, groundbreaking text. Readers will benefit from the broad overview of basic concepts, focusing on practical scientific and real-life applications of laser spectroscopic analysis and imaging. Chapters follow a consistent structure, beginning with a succinct summary of key principles and concepts, followed by an overview of applications, advantages and pitfalls, and finally a brief discussion of seminal advances and current developments. The examples used in this text span physics and chemistry to environmental science, biology, and medicine. Focuses on practical use in the laboratory and real-world applications Covers the basic concepts, common experimental setups Highlights advantages and caveats of the techniques Concludes each chapter with a snapshot of cutting-edge advances This book is appropriate for anyone in the physical sciences, biology, or medicine looking for an introduction to laser spectroscopic and imaging methodologies. Helmut H. Telle is a full professor at the Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain. Ángel González Ureña is head of the Department of Molecular Beams and Lasers, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain.
Semiconductor quantum optics is on the verge of moving from the lab to real world applications. When stepping from basic research to new technologies, device engineers will need new simulation tools for the design and optimization of quantum light sources, which combine classical device physics with cavity quantum electrodynamics. This thesis aims to provide a holistic description of single-photon emitting diodes by bridging the gap between microscopic and macroscopic modeling approaches. The central result is a novel hybrid quantum-classical model system that self-consistently couples semi-classical carrier transport theory with open quantum many-body systems. This allows for a comprehensive description of quantum light emitting diodes on multiple scales: It enables the calculation of the quantum optical figures of merit together with the simulation of the spatially resolved current flow in complex, multi-dimensional semiconductor device geometries out of one box. The hybrid system is shown to be consistent with fundamental laws of (non-)equilibrium thermodynamics and is demonstrated by numerical simulations of realistic devices.
This much-needed text brings the treatment of optical pattern recognition up-to-date in one comprehensive resource. Optical pattern recognition, one of the first implementations of Fourier Optics, is now widely used, and this text provides an accessible introduction for readers who wish to get to grips with how holography is applied in a practical context. A wide range of devices are addressed from a user perspective and are accompanied with detailed tables enabling performance comparison, in addition to chapters exploring computer-generated holograms, optical correlator systems, and pattern matching algorithms. This book will appeal to both lecturers and research scientists in the field of electro-optic devices and systems. Features: Covers a range of new developments, including computer-generated holography and 3D image recognition Accessible without a range of prior knowledge, providing a clear exposition of technically difficult concepts Contains extensive examples throughout to reinforce learning
This book covers device design fundamentals and system applications in optical MEMS and nanophotonics. Expert authors showcase examples of how fusion of nanoelectromechanical (NEMS) with nanophotonic elements is creating powerful new photonic devices and systems including MEMS micromirrors, MEMS tunable filters, MEMS-based adjustable lenses and apertures, NEMS-driven variable silicon nanowire waveguide couplers, and NEMS tunable photonic crystal nanocavities. The book also addresses system applications in laser scanning displays, endoscopic systems, space telescopes, optical telecommunication systems, and biomedical implantable systems. Presents efforts to scale down mechanical and photonic elements into the nano regime for enhanced performance, faster operational speed, greater bandwidth, and higher level of integration. Showcases the integration of MEMS and optical/photonic devices into real commercial products. Addresses applications in optical telecommunication, sensing, imaging, and biomedical systems. Prof. Vincent C. Lee is Associate Professor in the Department of Electrical and Computer Engineering, National University of Singapore. Prof. Guangya Zhou is Associate Professor in the Department of Mechanical Engineering at National University of Singapore.
Praise for prior editions "an excellent treatise of thin film coatings, explaining how to produce all sorts of different filters selected according to the function they are required to play... an indispensable text for every filter manufacturer and user and an excellent guide for students." ―Contemporary Physics "essential reading for all those involved in the design, manufacture, and application of optical coatings" ―Materials World "a must-have addition to the library of any optical thin-film theorist or practitioner" ―SVC News This book is quite simply the Bible for the field of optical thin films. It gives the most complete introduction to thin film optical coatings addressed to manufacturers and users alike. This fifth edition offers a complete update on current design, manufacture, performance, and applications. New topics include absorbers and coherent perfect absorbers, photonic crystals, and metamaterials for optical coating. The author has also made substantial additions on scattering, composite materials, wire grid polarizers, laser damage, and applications. H. Angus Macleod is President of Thin Film Center Inc., in Tucson, Arizona, and Professor Emeritus of Optical Sciences Center at the University of Arizona. His professional honors include a Gold Medal from SPIE, the Esther Hoffman Beller Medal from the Optical Society of America, and the Nathaniel H. Sugerman Memorial Award from the Society of Vacuum Coaters.
Detection of Optical Signals provides a comprehensive overview of important technologies for photon detection, from the X-ray through ultraviolet, visible, infrared to far-infrared spectral regions. It uniquely combines perspectives from many disciplines, particularly within physics and electronics, which are necessary to have a complete understanding of optical receivers. This interdisciplinary textbook aims to: Guide readers into more detailed and technical treatments of readout optical signals Give a broad overview of optical signal detection including terahertz region and two-dimensional material Help readers further their studies by offering chapter-end problems and recommended reading. This is an invaluable resource for graduate students in physics and engineering, as well as a helpful refresher for those already working with aerospace sensors and systems, remote sensing, thermal imaging, military imaging, optical telecommunications, infrared spectroscopy, and light detection.