Download Free Handbook Of Microwave And Optical Components Optical Components Book in PDF and EPUB Free Download. You can read online Handbook Of Microwave And Optical Components Optical Components and write the review.

Microwave Circuit Design Using Linear and Nonlinear Techniques George D. Vendelin, Anthony M. Pavio and Ulrich L. Rohde This one volume source for the computer optimization of microwave passive and active circuits is a complete introduction to modern microwave engineering using the S-parameter technique. The text presents state-of-the-art linear and nonlinear designs using computer-aided methods popular in the design and manufacture of microwave amplifiers, oscillators, and mixers. Ample and detailed discussion of the latest microwave transistors, circuit design, noise, passive microwave elements, and the incorporation of CAD into microwave integrated circuit (MIC) and monolithic microwave integrated circuit (MMIC) technology round out the text. Techniques presented are illustrated with several MMIC designs, which include a wideband amplifier, a low-noise amplifier, and an MMIC mixer 1990 (0 471-60276-0) 757 pp. Fundamentals of Photonics Bahaa E. A. Saleh and Malvin C. Teich This invaluable work provides a detailed introduction to the fascinating and converging disciplines behind photonics. Beginning with a discussion of the four theories of light (ray optics, wave optics, electromagnetic optics, and photon optics), the theory of interaction of light with matter, and the theory of semiconductor materials and their optical properties, the text progresses to a survey of the field’s up-to-the-minute advances. These include a look at Fourier optics and holography, guided wave optics and optical fibers, statistical optics, photonic switching and computing, and more. Providing applications and examples of real systems, the text skillfully balances theory and practice, providing engineers, researchers in fiber optics and communications, and students with an authoritative first look at photonics. 1991 (0 471-83965-5) 700 pp.
"This book provides a practical description of optics that satisfies the needs often encountered by some engineers in the practice of their profession. Optical components, including optical sources and detectors, have found their way into products that we buy for the house, and into industrial equipment. As a textbook, it provides an efficient tool for the student to gain in-depth knowledge of a subject, with homework problems to test and verify mastery of the subject." —Antonio Sanchez-Rubio, MIT Lincoln Laboratory, Lexington, Massachusetts, USA "This book covers all the experimental tools, described meticulously and with clear illustrations, which students will need to perform their experiments. I wish I had this book when I taught an optics course!" —A.K. Ramdas, Purdue University, West Lafayette, Indiana, USA This book provides readers with a brief introduction to optical components. Materials presented in this book prepare readers to deal with optical components in the areas of optics and optical technology. Introduction to Optical Components features nine chapters with topics ranging from lenses (materials, magnifiers, and cameras); mirrors (spherical, ellipsoidal, and aberrations); diffraction gratings (holographic and multilayer dielectric); polarizers (birefringent, reflective, and Jones matrix algebra); windows (UV and AR coating materials); filters (neutral density and Raman); beamsplitters (plate, cube, and pellicle); sources (light-emitting diodes and lasers); and detectors (thermal, photon, and photodetector noise). This text also features a detailed discussion of non-ideal effects for practical components using minimal amounts of derivations (that do not compromise essential physical, mathematical, or material properties). While there are numerous books that feature "optical" in their title, to date, no textbook on optical components exists. It is for this reason that Introduction to Optical Components is such a vital resource. The technical level of this book is equivalent to an undergraduate course in the optics and optical technology curriculum. Students are required to have little familiarity with optics. Practitioners in optics and optical technology will also find this book useful. Each chapter includes numerous mathematical equations; tables providing useful optical parameters for many optical materials; and end-of-chapter questions and their corresponding solutions.
A comprehensive introduction to the hardware, parameters, and architectures of RF/microwave wireless systems As the basis for some of the hottest technologies of the new millennium, radio frequency (RF) and microwave wireless systems rapidly propel us toward a future in which the transmission of voice, video, and data communications will be possible anywhere in the world through the use of simple, handheld devices. This book provides scientists and engineers with clear, thorough, up-to-date explanations of all aspects of RF and microwave wireless systems, including general hardware components, system parameters, and architectures. Renowned authority Kai Chang covers both communication and radar/sensor systems and extends the discussion to other intriguing topics, from global positioning systems (GPS) to smart highways and smart automobiles. With an emphasis on basic operating principles, Dr. Chang reviews waves and transmission lines, examines modulation and demodulation and multiple-access techniques, and helps bridge the gap between RF/microwave engineering and communication system design. Ample practical examples of components and system configurations and nearly 300 illustrations and photographs complete this timely and indispensable resource.
A field as diverse as optoelectronics needs a reference that is equally versatile. From basic physics and light sources to devices and state-of-the-art applications, the Handbook of Optoelectronics provides comprehensive, self-contained coverage of fundamental concepts and practical applications across the entire spectrum of disciplines encompassed by optoelectronics. The handbook unifies a broad array of current research areas with a forward-looking focus on systems and applications. Beginning with an introduction to the relevant principles of physics, materials science, engineering, and optics, the book explores the details of optoelectronic devices and techniques including semiconductor lasers, optical detectors and receivers, optical fiber devices, modulators, amplifiers, integrated optics, LEDs, and engineered optical materials. Applications and systems then become the focus, with sections devoted to industrial, medical, and commercial applications, communications, imaging and displays, sensing and data processing, spectroscopic analysis, the art of practical optoelectronics, and future prospects. This extensive resource comprises the efforts of more than 70 world-renowned experts from leading industrial and academic institutions around the world and includes many references to contemporary works. Whether used as a field reference, as a research tool, or as a broad and self-contained introduction to the field, the Handbook of Optoelectronics places everything you need in a unified, conveniently organized format.
Handbook of Optoelectronics offers a self-contained reference from the basic science and light sources to devices and modern applications across the entire spectrum of disciplines utilizing optoelectronic technologies. This second edition gives a complete update of the original work with a focus on systems and applications. Volume I covers the details of optoelectronic devices and techniques including semiconductor lasers, optical detectors and receivers, optical fiber devices, modulators, amplifiers, integrated optics, LEDs, and engineered optical materials with brand new chapters on silicon photonics, nanophotonics, and graphene optoelectronics. Volume II addresses the underlying system technologies enabling state-of-the-art communications, imaging, displays, sensing, data processing, energy conversion, and actuation. Volume III is brand new to this edition, focusing on applications in infrastructure, transport, security, surveillance, environmental monitoring, military, industrial, oil and gas, energy generation and distribution, medicine, and free space. No other resource in the field comes close to its breadth and depth, with contributions from leading industrial and academic institutions around the world. Whether used as a reference, research tool, or broad-based introduction to the field, the Handbook offers everything you need to get started. (The previous edition of this title was published as Handbook of Optoelectronics, 9780750306461.) John P. Dakin, PhD, is professor (emeritus) at the Optoelectronics Research Centre, University of Southampton, UK. Robert G. W. Brown, PhD, is chief executive officer of the American Institute of Physics and an adjunct full professor in the Beckman Laser Institute and Medical Clinic at the University of California, Irvine.
A comprehensive resource to designing and constructing analog photonic links capable of high RF performance Fundamentals of Microwave Photonics provides a comprehensive description of analog optical links from basic principles to applications. The book is organized into four parts. The first begins with a historical perspective of microwave photonics, listing the advantages of fiber optic links and delineating analog vs. digital links. The second section covers basic principles associated with microwave photonics in both the RF and optical domains. The third focuses on analog modulation formats—starting with a concept, deriving the RF performance metrics from basic physical models, and then analyzing issues specific to each format. The final part examines applications of microwave photonics, including analog receive-mode systems, high-power photodiodes applications, radio astronomy, and arbitrary waveform generation. Covers fundamental concepts including basic treatments of noise, sources of distortion and propagation effects Provides design equations in easy-to-use forms as quick reference Examines analog photonic link architectures along with their application to RF systems A thorough treatment of microwave photonics, Fundamentals of Microwave Photonics will be an essential resource in the laboratory, field, or during design meetings. The authors have more than 55 years of combined professional experience in microwave photonics and have published more than 250 associated works.