Download Free Handbook Of Green Chemistry Green Solvents Supercritical Solvents Book in PDF and EPUB Free Download. You can read online Handbook Of Green Chemistry Green Solvents Supercritical Solvents and write the review.

The conventional solvents used in chemical, pharmaceutical, biomedical and separation processes represent a great challenge to green chemistry because of their toxicity and flammability. Since the beginning of “the 12 Principles of Green Chemistry” in 1998, a general effort has been made to replace conventional solvents with environmentally benign substitutes. Water has been the most popular choice so far, followed by ionic liquids, surfactant, supercritical fluids, fluorous solvents, liquid polymers, bio-solvents and switchable solvent systems. Green Solvents Volume I and II provides a throughout overview of the different types of solvents and discusses their extensive applications in fields such as extraction, organic synthesis, biocatalytic processes, production of fine chemicals, removal of hydrogen sulphide, biochemical transformations, composite material, energy storage devices and polymers. These volumes are written by leading international experts and cover all possible aspects of green solvents’ properties and applications available in today’s literature. Green Solvents Volume I and II is an invaluable guide to scientists, R&D industrial specialists, researchers, upper-level undergraduates and graduate students, Ph.D. scholars, college and university professors working in the field of chemistry and biochemistry.
Everyone is becoming more environmentally conscious and therefore, chemical processes are being developed with their environmental burden in mind. This also means that more traditional chemical methods are being replaced with new innovations and this includes new solvents. Solvents are everywhere, but how necessary are they? They are used in most areas including synthetic chemistry, analytical chemistry, pharmaceutical production and processing, the food and flavour industry and the materials and coatings sectors. However, the principles of green chemistry guide us to use less of them, or to use safer, more environmentally friendly solvents if they are essential. Therefore, we should always ask ourselves, do we really need a solvent? Green chemistry, as a relatively new sub-discipline, is a rapidly growing field of research. Alternative solvents - including supercritical fluids and room temperature ionic liquids - form a significant portion of research in green chemistry. This is in part due to the hazards of many conventional solvents (e.g. toxicity and flammability) and the significant contribution that solvents make to the waste generated in many chemical processes. Solvents are important in analytical chemistry, product purification, extraction and separation technologies, and also in the modification of materials. Therefore, in order to make chemistry more sustainable in these fields, a knowledge of alternative, greener solvents is important. This book, which is part of a green chemistry series, uses examples that tie in with the 12 principles of green chemistry e.g. atom efficient reactions in benign solvents and processing of renewable chemicals/materials in green solvents. Readers get an overview of the many different kinds of solvents, written in such a way to make the book appropriate to newcomers to the field and prepare them for the 'green choices' available. The book also removes some of the mystique associated with 'alternative solvent' choices and includes information on solvents in different fields of chemistry such as analytical and materials chemistry in addition to catalysis and synthesis. The latest research developments, not covered elsewhere, are included such as switchable solvents and biosolvents. Also, some important areas that are often overlooked are described such as naturally sourced solvents (including ethanol and ethyl lactate) and liquid polymers (including poly(ethyleneglycol) and poly(dimethylsiloxane)). As well as these additional alternative solvents being included, the book takes a more general approach to solvents, not just focusing on the use of solvents in synthetic chemistry. Applications of solvents in areas such as analysis are overviewed in addition to the more widely recognised uses of alternative solvents in organic synthesis. Unfortunately, as the book shows, there is no universal green solvent and readers must ascertain their best options based on prior chemistry, cost, environmental benefits and other factors. It is important to try and minimize the number of solvent changes in a chemical process and therefore, the importance of solvents in product purification, extraction and separation technologies are highlighted. The book is aimed at newcomers to the field whether research students beginning investigations towards their thesis or industrial researchers curious to find out if an alternative solvent would be suitable in their work.
This book, appropriate for newcomers to the field, gives an overview of the many different kinds of solvents including alternative greener solvent choices.
Discover the many new and emerging applications of supercritical water as a green solvent Drawing from thousands of original research articles, this book reviews and summarizes what is currently known about the properties and uses of supercritical water. In particular, it focuses on new and emerging applications of supercritical water as a green solvent, including the catalytic conversion of biomass into fuels and the oxidation of hazardous materials. Supercritical Water begins with an introduction that defines supercritical fluids in general. It then defines supercritical water in particular, using the saturation curve to illustrate its relationship to regular water. Following this introduction, the book: Describes the bulk macroscopic properties of supercritical water, using equations of state to explain temperature-pressure-density relationships Examines supercritical water's molecular properties, setting forth the latest experimental data as well as computer simulations that shed new light on structure and dynamics Explores the solubilities of gases, organic substances, salts, and ions in supercritical water in terms of the relevant phase equilibria Sets forth the practical uses of supercritical water at both small scales and full industrial scales Throughout the book, the author uses tables for at-a-glance reviews of key information. Summaries at the end of each chapter reinforce core principles, and references to original research and reviews serve as a gateway and guide to the extensive literature in the field. Supercritical Water is written for students and professionals in physical chemistry, chemistry of water, chemical engineering, and organic chemistry, interested in exploring the applications and properties of supercritical water.
Green Chemistry is a vitally important subject area in a world where being as green and environmentally sound as possible is no longer a luxury but a necessity. Its applications include the design of chemical products and processes that help to reduce or eliminate the use and generation of hazardous substances. The Handbook of Green Chemistry comprises 12 volumes, split into subject-specific sets as follows: Set I: Green Catalysis Set II: Green Solvents • Volume 4: Supercritical Solvents • Volume 5: Reactions in Water • Volume 6: Ionic Liquids Set III: Green Processes Set IV: Green Products Supercritical Fluids (SCFs) and Gas-Expanded Liquids (GXLs) are of great interest in green chemistry because either they are nontoxic and non-polluting solvents (like carbon dioxide or water) or they help one to avoid harmful intermediates through new processing routes. This book examines the use of SCFs and GXLs in catalysis, polymerization and many other major reactions and processes where avoiding the use of a hazardous solvent is beneficial for the environment and the economy. The additional control parameters resulting from the unique physiochemical properties of solvents are discussed and highlighted with numerous examples from the current literature and applications.
New Generation Green Solvents for Separation and Preconcentration of Organic and Inorganic Species is designed to help researchers and students understand the production and application of new generation green solvents in separation- and preconcentration-based analytical methods. Beginning with the historical background and milestones in the development of analytical instrumentation, the book goes on to give a detailed overview of the most up-to-date uses of green solvents in sample preparation. Using a wealth of examples, it compares old and new extraction procedures and explores the many applications of new generation green solvents. Practical, easy-to-follow experiments are used to illustrate the key concepts. This practical guide helps to promote the use of safer, more sustainable solvents in analytical chemistry and beyond for environmental scientists, researchers in pharmaceutical and biotech industries, and students in analytical chemistry. - Covers the basic analytical theory essential for understanding extraction- and microextraction-based separation and preconcentration methods - Explains combination use of new generation solvents with various detection systems, including UV-VIS, ICP-MS, HPLC, LC-MS, GC-MS, and LC-MS/MS - Emphasizes trace chemical component separation, preconcentration and analysis
A world where the emphasis has shifted to being as green and environmentally friendly as possible leads to the requirement of this important 3-book set of the Handbook of Green Chemistry edited by the father and pioneer of Green Chemistry, Professor Paul Anastas. This series summarises the significant body of work that has accumulated over the past decade that details the breakthroughs, innovation and creativity within Green Chemistry and Engineering. Set II comprises of 3 books, with each volume focussing on a different area and edited by leading scientists in the field: Supercritical Solvents - Editors: W. Leitner and P. G. Jessop Ionic Liquids - Editors: P. Wasserscheid and A. Stark Reactions in Water - Editor: C.-J. Li An essential collection for anyone wishing to gain an understanding of the world of green chemistry and for a variety of chemists, environmental agencies and chemical engineers. The Handbook of Green Chemistry comprises of 9 volumes in total, split into 3 subject-specific sets. The three sets are available individually. All 9 volumes are available individually, too. Set I: Green Catalysis - Volume 1: Homogeneous Catalysis - Volume 2: Heterogeneous Catalysis - Volume 3: Biocatalysis Set II: Green Solvents - Volume 4: Supercritical Solvents - Volume 5: Reactions in Water - Volume 6: Ionic Liquids Set III: Green Processes - Volume 7: Green Synthesis - Volume 8: Green Nanoscience - Volume 9: Designing Safer Chemicals The Handbook of Green Chemistry is also available as Online Edition. Podcasts Listen to two podcasts in which Professor Paul Anastas and Journals Editor Paul Trevorrow discuss the origin and expansion of Green Chemistry and give an overview of The Handbook of Green Chemistry.
This 4th edition of Handbook of Solvents, Volume 1, contains the most recent findings and trends in solvent applications. It is a comprehensive survey of the science of solvents and their properties, covering all aspects of solvent behavior that are relevant to their use in chemical and related industries including agricultural and technical processes, inorganic synthesis and materials chemistry, and more. Divided into two volumes, this first volume covers high-level information on the physical chemical properties of the most relevant solvent systems. Each chapter is focused on a specific aspect of solvent properties that determine its selection, such as the effect on properties of solutes and solutions, properties of different groups of solvents, and the summary of their applications' effect on health and the environment (given in tabulated form). Also covered is swelling of solids in solvents, solvent diffusion and drying processes, nature of the interaction of solvent and solute in solutions, acid-base interactions, the effect of solvents on spectral and other electronic properties of solutions, the effect of solvents on the rheology of the solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, conformation of dissolved high molecular weight compounds, and the effect of solvents on chemical reactions and reactivity of dissolved substances. With insight from specialists in a broad array of different areas and written with an interdisciplinary audience in mind, this thoroughly revised 4th edition provides readers with a complete overview of all the organic solvents available for industrial applications today. The book contains numerous references to key sources of more detailed information, and together with Handbook of Solvents Volume 2: Use, Health, and Environment; Databook of Green Solvents; and Databook of Solvents, represents the most comprehensive and up-to-date information ever published on solvents. - Provides key insights that will help engineers and scientists select the best solvent for the job - Includes practical information and ideas on how to improve existing processes involving solvents - Presents the latest advances in solvent technology and their applications
A multidisciplinary overview of bio-derived solvent applications, life cycle analysis, and strategies required for industrial commercialization This book provides the first and only comprehensive review of the state-of-the-science in bio-derived solvents. Drawing on their own pioneering work in the field, as well as an exhaustive survey of the world literature on the subject, the authors cover all the bases—from bio-derived solvent applications to life cycle analysis to strategies for industrial commercialization—for researchers and professional chemists working across a range of industries. In the increasingly critical area of sustainable chemistry, the search for new and better green solvents has become a top priority. Thanks to their renewability, biodegradability and low toxicity, as well as their potential to promote advantageous organic reactions, green solvents offer the promise of significantly reducing the pernicious effects of chemical processes on human health and the environment. Following an overview of the current solvents markets and the challenges and opportunities presented by bio-derived solvents, a series of dedicated chapters cover all significant classes of solvent arranged by origin and/or chemical structure. Throughout, real-world examples are used to help demonstrate the various advantages, drawbacks, and limitations of each class of solvent. Topics covered include: The commercial potential of various renewably sourced solvents, such as glycerol The various advantages and disadvantages of bio-derived versus petroleum-based solvents Renewably-sourced and waste-derived solvents in the design of eco-efficient processes Life cycle assessment and predictive methods for bio-based solvents Industrial and commercial viability of bio-based solvents now and in the years ahead Potential and limitations of methodologies involving bio-derived solvents New developments and emerging trends in the field and the shape of things to come Considering the vast potential for new and better products suggested by recent developments in this exciting field, Bio-Based Solvents will be a welcome resource among students and researchers in catalysis, organic synthesis, electrochemistry, and pharmaceuticals, as well as industrial chemists involved in manufacturing processes and formulation, and policy makers.
The shift towards being as environmentally-friendly as possible has resulted in the need for this important volume on the role of ionic liquids in green chemistry. Edited by Peter Wasserscheid, one of the pioneers of ionic liquid research, and Annegret Stark, this is an essential resource for anyone wishing to gain an understanding of the world of green chemistry, as well as for chemists, environmental agencies and chemical engineers.