Download Free Handbook Of Functional Connectivity Magnetic Resonance Imaging Methods In Conn Book in PDF and EPUB Free Download. You can read online Handbook Of Functional Connectivity Magnetic Resonance Imaging Methods In Conn and write the review.

This handbook describes methods for processing and analyzing functional connectivity Magnetic Resonance Imaging (fcMRI) data using the CONN toolbox, a popular freely-available functional connectivity analysis software. Content description [excerpt from introduction] The first section (fMRI minimal preprocessing pipeline) describes standard and advanced preprocessing steps in fcMRI. These steps are aimed at correcting or minimizing the influence of well-known factors affecting the quality of functional and anatomical MRI data, including effects arising from subject motion within the scanner, temporal and spatial image distortions due to the sequential nature of the scanning acquisition protocol, and inhomogeneities in the scanner magnetic field, as well as anatomical differences among subjects. Even after these conventional preprocessing steps, the measured blood-oxygen-level-dependent (BOLD) signal often still contains a considerable amount of noise from a combination of physiological effects, outliers, and residual subject-motion factors. If unaccounted for, these factors would introduce very strong and noticeable biases in all functional connectivity measures. The second section (fMRI denoising pipeline) describes standard and advanced denoising procedures in CONN that are used to characterize and remove the effect of these residual non-neural noise sources. Functional connectivity Magnetic Resonance Imaging studies attempt to quantify the level of functional integration across different brain areas. The third section (functional connectivity measures) describes a representative set of functional connectivity measures available in CONN, each focusing on different indicators of functional integration, including seed-based connectivity measures, ROI-to-ROI measures, graph theoretical approaches, network-based measures, and dynamic connectivity measures. Second-level analyses allow researchers to make inferences about properties of groups or populations, by generalizing from the observations of only a subset of subjects in a study. The fourth section (General Linear Model) describes the mathematics behind the General Linear Model (GLM), the approach used in CONN for all second-level analyses of functional connectivity measures. The description includes GLM model definition, parameter estimation, and hypothesis testing framework, as well as several practical examples and general guidelines aimed at helping researchers use this method to answer their specific research questions. The last section (cluster-level inferences) details several approaches implemented in CONN that allow researchers to make meaningful inferences from their second-level analysis results while providing appropriate family-wise error control (FWEC), whether in the context of voxel-based measures, such as when studying properties of seed-based maps across multiple subjects, or in the context of ROI-to-ROI measures, such as when studying properties of ROI-to-ROI connectivity matrices across multiple subjects.
Zusammenfassung: The 7-volume set LNCS 14832 - 14838 constitutes the proceedings of the 24th International Conference on Computational Science, ICCS 2024, which took place in Malaga, Spain, during July 2-4, 2024. The 155 full papers and 70 short papers included in these proceedings were carefully reviewed and selected from 430 submissions. They were organized in topical sections as follows: Part I: ICCS 2024 Main Track Full Papers; Part II: ICCS 2024 Main Track Full Papers; Part III: ICCS 2024 Main Track Short Papers; Advances in High-Performance Computational Earth Sciences: Numerical Methods, Frameworks and Applications; Artificial Intelligence and High-Performance Computing for Advanced Simulations; Part IV: Biomedical and Bioinformatics Challenges for Computer Science; Computational Health; Part V: Computational Optimization, Modelling, and Simulation; Generative AI and Large Language Models (LLMs) in Advancing Computational Medicine; Machine Learning and Data Assimilation for Dynamical Systems; Multiscale Modelling and Simulation; Part VI: Network Models and Analysis: From Foundations to Artificial Intelligence; Numerical Algorithms and Computer Arithmetic for Computational Science; Quantum Computing; Part VII: Simulations of Flow and Transport: Modeling, Algorithms and Computation; Smart Systems: Bringing Together Computer Vision, Sensor Networks, and Artificial Intelligence; Solving Problems with Uncertainties; Teaching Computational Science
This book describes new theories and applications of artificial neural networks, with a special focus on answering questions in neuroscience, biology and biophysics and cognitive research. It covers a wide range of methods and technologies, including deep neural networks, large-scale neural models, brain–computer interface, signal processing methods, as well as models of perception, studies on emotion recognition, self-organization and many more. The book includes both selected and invited papers presented at the XXV International Conference on Neuroinformatics, held on October 23-27, 2023, in Moscow, Russia.