Download Free Handbook Of Brain Connectivity Book in PDF and EPUB Free Download. You can read online Handbook Of Brain Connectivity and write the review.

Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring structural and functional connectivity in the brain. Part three provides an overview of the analysis techniques currently available and highlights new developments. Part four introduces the application and translation of the concepts of brain connectivity to behavior, cognition and the clinical domain.
This handbook describes methods for processing and analyzing functional connectivity Magnetic Resonance Imaging (fcMRI) data using the CONN toolbox, a popular freely-available functional connectivity analysis software. Content description [excerpt from introduction] The first section (fMRI minimal preprocessing pipeline) describes standard and advanced preprocessing steps in fcMRI. These steps are aimed at correcting or minimizing the influence of well-known factors affecting the quality of functional and anatomical MRI data, including effects arising from subject motion within the scanner, temporal and spatial image distortions due to the sequential nature of the scanning acquisition protocol, and inhomogeneities in the scanner magnetic field, as well as anatomical differences among subjects. Even after these conventional preprocessing steps, the measured blood-oxygen-level-dependent (BOLD) signal often still contains a considerable amount of noise from a combination of physiological effects, outliers, and residual subject-motion factors. If unaccounted for, these factors would introduce very strong and noticeable biases in all functional connectivity measures. The second section (fMRI denoising pipeline) describes standard and advanced denoising procedures in CONN that are used to characterize and remove the effect of these residual non-neural noise sources. Functional connectivity Magnetic Resonance Imaging studies attempt to quantify the level of functional integration across different brain areas. The third section (functional connectivity measures) describes a representative set of functional connectivity measures available in CONN, each focusing on different indicators of functional integration, including seed-based connectivity measures, ROI-to-ROI measures, graph theoretical approaches, network-based measures, and dynamic connectivity measures. Second-level analyses allow researchers to make inferences about properties of groups or populations, by generalizing from the observations of only a subset of subjects in a study. The fourth section (General Linear Model) describes the mathematics behind the General Linear Model (GLM), the approach used in CONN for all second-level analyses of functional connectivity measures. The description includes GLM model definition, parameter estimation, and hypothesis testing framework, as well as several practical examples and general guidelines aimed at helping researchers use this method to answer their specific research questions. The last section (cluster-level inferences) details several approaches implemented in CONN that allow researchers to make meaningful inferences from their second-level analysis results while providing appropriate family-wise error control (FWEC), whether in the context of voxel-based measures, such as when studying properties of seed-based maps across multiple subjects, or in the context of ROI-to-ROI measures, such as when studying properties of ROI-to-ROI connectivity matrices across multiple subjects.
Functional magnetic resonance imaging (fMRI) has become the most popular method for imaging brain function. Handbook for Functional MRI Data Analysis provides a comprehensive and practical introduction to the methods used for fMRI data analysis. Using minimal jargon, this book explains the concepts behind processing fMRI data, focusing on the techniques that are most commonly used in the field. This book provides background about the methods employed by common data analysis packages including FSL, SPM, and AFNI. Some of the newest cutting-edge techniques, including pattern classification analysis, connectivity modeling, and resting state network analysis, are also discussed. Readers of this book, whether newcomers to the field or experienced researchers, will obtain a deep and effective knowledge of how to employ fMRI analysis to ask scientific questions and become more sophisticated users of fMRI analysis software.
Choice Outstanding Academic Title, 1996. In hundreds of articles by experts from around the world, and in overviews and "road maps" prepared by the editor, The Handbook of Brain Theory and Neural Networks charts the immense progress made in recent years in many specific areas related to great questions: How does the brain work? How can we build intelligent machines? While many books discuss limited aspects of one subfield or another of brain theory and neural networks, the Handbook covers the entire sweep of topics—from detailed models of single neurons, analyses of a wide variety of biological neural networks, and connectionist studies of psychology and language, to mathematical analyses of a variety of abstract neural networks, and technological applications of adaptive, artificial neural networks. Expository material makes the book accessible to readers with varied backgrounds while still offering a clear view of the recent, specialized research on specific topics.
Connectomic Deep Brain Stimulation (DBS) covers this highly efficacious treatment option for movement disorders such as Parkinson's Disease, Essential Tremor and Dystonia. The book examines its impact on distributed brain networks that span across the human brain in parallel with modern-day neuroimaging concepts and the connectomics of the brain. It asks several questions, including which cortical areas should DBS electrodes be connected in order to generate the highest possible clinical improvement? Which connections should be avoided? Could these connectomic insights be used to better understand the mechanism of action of DBS? How can they be transferred to individual patients, and more. This book is suitable for neuroscientists, neurologists and functional surgeons studying DBS. It provides practical advice on processing strategies and theoretical background, highlighting and reviewing the current state-of-the-art in connectomic surgery. - Written to provide a "hands-on" approach for neuroscience graduate students, as well as medical personnel from the fields of neurology and neurosurgery - Includes preprocessing strategies (such as co-registration, normalization, lead localization, VTA estimation and fiber-tracking approaches) - Presents references (key articles, books and protocols) for additional detailed study - Provides data analysis boxes in each chapter to help with data interpretation
The Parietal Lobe, Volume 151, the latest release from the Handbook of Clinical Neurology series, provides a foundation on the neuroanatomy, neurophysiology and clinical neurology/neuropsychology of the parietal lobe that is not only applicable to both basic researchers and clinicians, but also to students and specialists who are interested in learning more about disorders brought on by damage or dysfunction. Topics encompass the evolution, anatomy, connections, and neurophysiology, the major neurological and neuropsychological deficits and syndromes caused by damage, the potential for improvement via transcranial stimulation, and the role of the parietal in the cerebral networks for perception and action. - Provides a broad overview of the neuroanatomy, neurophysiology and clinical neurology of this region of the cortex - Offers additional insights regarding the role of the parietal in the cerebral networks for perception and action - Addresses the most frequent complications associated with damage, including somatosensory, perceptual, language, and memory, deficits, pain, optic ataxia, spatial neglect, apraxia, and more - Edited work with chapters authored by global leaders in the field - Presents the broadest, most expert coverage available
This volume provides a thorough and up-to-date synthesis of the expansive and highly influential literature from the last 30 years by bringing together contributions from leading authorities in the field, with emphasis placed on the most commonly investigated drugs of abuse. Emphasises the most commonly investigated drugs of abuse, including alcohol, cocaine, nicotine, and opiates Brings together the work of the leading authorities in all major areas of the field Provides novel coverage of cutting-edge methods for using cognitive neuroscience to advance the treatment of addiction, including real-time neurofeedback and brain stimulation methods Includes new material on emerging themes and future directions in the use of cognitive neuroscience to advance addiction science
Covering basic theory, new research, and intersections with adjacent fields, this is the first comprehensive reference work on cognitive control – our ability to use internal goals to guide thought and behavior. Draws together expert perspectives from a range of disciplines, including cognitive psychology, neuropsychology, neuroscience, cognitive science, and neurology Covers behavioral phenomena of cognitive control, neuroanatomical and computational models of frontal lobe function, and the interface between cognitive control and other mental processes Explores the ways in which cognitive control research can inform and enhance our understanding of brain development and neurological and psychiatric conditions
Networked systems are all around us. The accumulated evidence of systems as complex as a cell cannot be fully understood by studying only their isolated constituents, giving rise to a new area of interest in research ? the study of complex networks. In a broad sense, biological networks have been one of the most studied networks, and the field has benefited from many important contributions. By understanding and modeling the structure of a biological network, a better perception of its dynamical and functional behavior is to be expected. This unique book compiles the most relevant results and novel insights provided by network theory in the biological sciences, ranging from the structure and dynamics of the brain to cellular and protein networks and to population-level biology.
Handbook of Pediatric Brain Imaging: Methods and Applications presents state-of-the-art research on pediatric brain image acquisition and analysis from a broad range of imaging modalities, including MRI, EEG and MEG. With rapidly developing methods and applications of MRI, this book strongly emphasizes pediatric brain MRI, elaborating on the sub-categories of structure MRI, diffusion MRI, functional MRI, perfusion MRI and other MRI methods. It integrates a pediatric brain imaging perspective into imaging acquisition and analysis methods, covering head motion, small brain sizes, small cerebral blood flow of neonates, dynamic cortical gyrification, white matter tract growth, and much more. Presents state-of-the-art pediatric brain imaging methods and applications Shows how to optimize the pediatric neuroimaging acquisition and analysis protocols Illustrates how to obtain quantitative structural, functional and physiological measurements