Download Free Handbook Of Bioenergy Crop Plants Book in PDF and EPUB Free Download. You can read online Handbook Of Bioenergy Crop Plants and write the review.

As the world's population is projected to reach 10 billion or more by 2100, devastating fossil fuel shortages loom in the future unless more renewable alternatives to energy are developed. Bioenergy, in the form of cellulosic biomass, starch, sugar, and oils from crop plants, has emerged as one of the cheaper, cleaner, and environmentally sustainab
Biomass currently accounts for about fifteen per cent of global primary energy consumption and is playing an increasingly important role in the face of climate change, energy and food security concerns. Handbook of Bioenergy Crops is a unique reference and guide, with extensive coverage of more than eighty of the main bioenergy crop species. For each it gives a brief description, outlines the ecological requirements, methods of propagation, crop management, rotation and production, harvesting, handling and storage, processing and utilization, then finishes with selected references. This is accompanied by detailed guides to biomass accumulation, harvesting, transportation and storage, as well as conversion technologies for biofuels and an examination of the environmental impact and economic and social dimensions, including prospects for renewable energy. This is an indispensable resource for all those involved in biomass production, utilization and research.
The volume on Industrial Crop Breeding will be part of the series, Handbook of Plant Breeding. This volume will focus on the emerging area of plant breeding for sustainable production of transportation fuels and bio based products using the current advances in the field. The book is scheduled to consist of a total number of 30 chapters divided into four sections. The sections will emphasize crops being considered for different challenge areas including oil crops for biodiesel; sugar, starch and cellulosic crops for biofuel; crops for bio products and issues and future prospects. A chapter introducing the first three sections will also be included. Outstanding scientists for each crop species are proposed as senior authors, who may invite co-authors to contribute part of a chapter to provide additional expertise or perspective. The proposed authors will represent various national and international institutions to get a more diverse view on the topic and somehow get a global view on the common issues that researchers on industrial crops are facing. The book will comprise primarily of specific issues, available germplasm, breeding techniques, and potential geographical areas of production pertaining to individual crops being considered for industrial uses. We hope to encourage the proposed authors of new crops to provide an estimate of the crop readiness for commercial development and discuss the limitations. This book will be will be of interest and envisioned to serve as an updated reference to researchers in both academic and industrial setting, to students and teachers of plant breeding and to policy makers who are looking for alternative solutions to dependency on imported petroleum products.
This edited book summarizes the efforts made to develop sustainable bioenergy production through different generations. The topics included in the book cover information about different bioenergy crops, their classification and use as biofuel, agronomic practices to improve biomass yield, classic breeding techniques, genetic diversity, current status and future perspective of bioenergy crops in the omics era. It also discusses application of modern biotechnological and molecular biotechnological techniques for the improvement of bioenergy crops this having enhanced biomass and plant based products. The book explores growing biofuel crops and their impact on environment, bioethics and biosafety issues related to the modern approaches. Another important aspect is the incorporation of nanotechnology for bioenergy crops and biofuel production. All book chapters are contributed renowned researchers in their respective field. This is a unique book covering the bioeneragy crops in the modern omics era. The book is useful for the researchers and post-graduate students to guide them in the field of bioenergy crops.
Ethanol as an alternative fuel is receiving a lot of attention because it addresses concerns related to dwindling oil supplies, energy independence, and climate change. The majority of the ethanol in the US is produced from corn starch. With the US Department of Energy’s target that 30% of the fuel in the US is produced from renewable resources by 2030, the anticipated demand for corn starch will quickly exceed the current production of corn. This, plus the concern that less grain will become available for food and feed purposes, necessitates the use of other feedstocks for the production of ethanol. For the very same reasons, there is increasing research activity and growing interest in many other biomass crops. Genetic Improvement of Bio-Energy Crops focuses on the production of ethanol from lignocellulosic biomass, which includes corn stover, biomass from dedicated annual and perennial energy crops, and trees as well as a number of important biomass crops. The biomass is typically pretreated through thermochemical processing to make it more amenable to hydrolysis with cellulolytic enzymes. The enzymatic hydrolysis yields monomeric sugars that can be fermented to ethanol by micro-organisms. While much emphasis has been placed on the optimization of thermo-chemical pretreatment processes, production of more efficient hydrolytic enzymes, and the development of robust microbial strains, relatively little effort has been dedicated to the improvement of the biomass itself.
Handbook of Algal Biofuels: Aspects of Cultivation, Conversion and Biorefinery comprehensively covers the cultivation, harvesting, conversion, and utilization of microalgae and seaweeds for different kinds of biofuels. The book addresses four main topics in the algal biofuel value-chain. First, it explores algal diversity and composition, covering micro- and macroalgal diversity, classification, and composition, their cultivation, biotechnological applications, current use within industry for biofuels and value-added products, and their application in CO2 sequestration, wastewater treatment, and water desalination. Next, the book addresses algal biofuel production, presenting detailed guidelines and protocols for different production routes of biodiesel, biogas, bioethanol, biobutanol, biohydrogen, jet fuel, and thermochemical conversation methods. Then, the authors discuss integrated approaches for enhanced biofuel production. This includes updates on the recent advances, breakthroughs, and challenges of algal biomass utilization as a feedstock for alternative biofuels, process intensification techniques, life cycle analysis, and integrated approaches such as wastewater treatment with CO2 sequestration using cost-effective and eco-friendly techniques. In addition, different routes for waste recycling for enhanced biofuel production are discussed alongside economic analyses. Finally, this book presents case studies for algal biomass and biofuel production including BIQ algae house, Renewable Energy Laboratory project, Aquatic Species Program, and the current status of algal industry for biofuel production. Handbook of Algal Biofuels offers an all-in-one resource for researchers, graduate students, and industry professionals working in the areas of biofuels and phycology and will be of interest to engineers working in renewable energy, bioenergy, alternative fuels, biotechnology, and chemical engineering. Furthermore, this book includes structured foundational content on algae and algal biofuels for undergraduate and graduate students working in biology and life sciences. Provides complete coverage of the biofuel production process, from cultivation to biorefinery Includes a detailed discussion of process intensification, lifecycle analysis and biofuel byproducts Describes key aspects of algal diversity and composition, including their cultivation, harvesting and advantages over conventional biomass
This book provides concerns useful to promote an increase of the productivity of crops by using functional genomics. Fundamental thematics have been addressed: metabolic engineering, plant breeding tools, renewable biomass for energy generation, fibres and composites, and biopharmaceuticals. The gained know how is relevant to identify bottlenecks in the major production chains and to propose actions for moving these issues forward.
This handbook brings together recent advances in the areas of supply chain optimization, supply chain management, and life-cycle cost analysis of bioenergy. These topics are important for the development and long-term sustainability of the bioenergy industry. The increasing interest in bioenergy has been motivated by its potential to become a key future energy source. The opportunities and challenges that this industry has been facing have been the motivation for a number of optimization-related works on bioenergy. Practitioners and academicians agree that the two major barriers of further investments in this industry are biomass supply uncertainty and costs. The goal of this handbook is to present several cutting-edge developments and tools to help the industry overcome these supply chain and economic challenges. Case studies highlighting the problems faced by investors in the US and Europe illustrate the impact of certain tools in making bioenergy an economically viable energy option.
Explore a Major Component of Renewable Energy Introduction to Bioenergy takes a look at energy from biomass (thermal energy, power, liquid fuels, and biogas) and envisions a sustainable future fueled by renewable energy. From production to conversion to heat, power, and biofuel, this book breaks down the science of bioenergy and explains the major processes for its production, conversion, and use. Covers Solar Energy, Bioenergy, and Biomass Resources The book begins with an introduction to solar energy (the source of bioenergy) and then moves on to describe bioenergy, biomass, chemical conversion, and the renewable energy processes involved. The authors cover measurement energy parameters, analysis of data, and the prediction of energy production for different bio products. They also consider the institutional, environmental, and economic concerns surrounding bioenergy. An all-inclusive resource covering a rapidly-advancing field, this book: Explores the impact of climate change and global warming on the production of biomass Describes the positive and negative effects of biomass production on ecosystems and biodiversity Illustrates the use of biomass for the production of electricity Considers the replacement of fossil fuels with biofuels, biofuel production, and emerging technologies Addresses institutional and environmental issues relevant to bioenergy Discusses factors impacting the economic feasibility of renewable energy systems Introduction to Bioenergy defines major processes for the production, conversion, and use of bioenergy. A book suitable for coursework or self-study, this essential work serves students and practicing professionals in the renewable energy, environmental science, agriculture engineering, and biology fields.