Download Free Handbook Of Biochips Book in PDF and EPUB Free Download. You can read online Handbook Of Biochips and write the review.

This book provides a broad survey of the field of biochips, including fundamentals of microelectronics and biomaterials interaction with various, living tissues, as well as numerous, diverse applications. Although a wide variety of biochips will be described, there will be a focus on those at the brain-machine interface. Analysis is included of the relationship between different categories of biochips and their interactions with the body and coverage includes wireless remote control of biochips and arrays of microelectrodes, based on new biomaterials.
This book brings together contributions from internationally renowned experts in the biochip field. The authors present not only their latest research work, but also discuss current trends in biochip technology. Specific topics range from microarray technology and its applications to lab-on-a-chip technology.
Biochip technology has experienced explosive growth in recent years and Biochip technology describes the basic manufacturing and fabrication processes and the current range of applications of these chips. Top scientists from the biochip industry and related areas explain the diverse applications of biochips in gene sequencing, expression monitoring, disease diagnosis, tumor examination, ligand assay and drug discovery.
A wide variety of biomedical photonic technologies have been developed recently for clinical monitoring of early disease states; molecular diagnostics and imaging of physiological parameters; molecular and genetic biomarkers; and detection of the presence of pathological organisms or biochemical species of clinical importance. However, available in
With contributions from experts in the field, the Handbook of Biosensors and Biochips provides an essential reference, underpinning many of the applications used in medical diagnostics, environmental control and pharmaceutical and food industries. It presents an invaluable addition for those in both academia and industry.
The topic of this book is the development of automated and inexpensive tools that transfer medical tests from a specialized clinical laboratory directly to the point of care, using biochip technology. Immediate access to medically relevant biochemical information for doctors and nurses promises to revolutionize patient care and dramatically lower costs. The miniaturization and automation of medical tests are made possible by biochip technology, that integrates advances in integrated circuits, microelectromechanical systems (MEMS), microfluidics, and electronics. The target audience for this book includes engineering and biomedical researchers who would like to develop or apply biochip technology. They can use this book as a review of the field and as a guide for the development of novel biochip technology for point of care medicine. This book can also be used as a teaching tool for engineering and biomedical students, as well as a reference for physicians and health professionals.
This new handbook covers the world of biophotonics not only geographically -- with the editors coming from different continents -- but also in terms of content, since the authors come from the whole spectrum of biophotonic basic and applied research. Designed to set the standard for the scientific community, these three volumes break new ground by providing readers with the physics basics as well as the biological and medical background, together with detailed reports on recent technical advances. The Handbook also adopts an application-related approach, starting with the application and then citing the various tools to solve the scientific task, making it of particular value to medical doctors. Divided into several sections, the first part offers introductory chapters on the different fields of research, with subsequent parts focusing on the applications and techniques in various fields of industry and research. The result is a handy source for scientists seeking the basics in a condensed form, and equally a reference for quickly gathering the knowledge from neighboring disciplines. Absolutely invaluable for biophotonic scientists in their daily work.
This wide-ranging summary of bioelectronics provides the state of the art in electronics integrated and interfaced with biological systems in one single book. It is a perfect reference for those involved in developing future distributed diagnostic devices, from smart bio-phones that will monitor our health status to new electronic devices serving our bodies and embedded in our clothes or under our skin. All chapters are written by pioneers and authorities in the key branches of bioelectronics and provide examples of real-word applications and step-by-step design details. Through expert guidance, you will learn how to design complex circuits whilst cutting design time and cost and avoiding mistakes, misunderstandings, and pitfalls. An exhaustive set of recently developed devices is also covered, providing the implementation details and inspiration for innovating new solutions and devices. This all-inclusive reference is ideal for researchers in electronics, bio/nanotechnology, and applied physics, as well as circuit and system-level designers in industry.
Digital Microfluidic Biochips focuses on the automated design and production of microfluidic-based biochips for large-scale bioassays and safety-critical applications. Bridging areas of electronic design automation with microfluidic biochip research, the authors present a system-level design automation framework that addresses key issues in the design, analysis, and testing of digital microfluidic biochips. The book describes a new generation of microfluidic biochips with more complex designs that offer dynamic reconfigurability, system scalability, system integration, and defect tolerance. Part I describes a unified design methodology that targets design optimization under resource constraints. Part II investigates cost-effective testing techniques for digital microfluidic biochips that include test resource optimization and fault detection while running normal bioassays. Part III focuses on different reconfiguration-based defect tolerance techniques designed to increase the yield and dependability of digital microfluidic biochips. Expanding upon results from ongoing research on CAD for biochips at Duke University, this book presents new design methodologies that address some of the limitations in current full-custom design techniques. Digital Microfluidic Biochips is an essential resource for achieving the integration of microfluidic components in the next generation of system-on-chip and system-in-package designs.