Download Free Hamiltonian Structures And Generating Families Book in PDF and EPUB Free Download. You can read online Hamiltonian Structures And Generating Families and write the review.

This book is an enhanced version of an earlier Russian edition. Besides thorough revisions, more emphasis was put on reordering the topics according to a category-theoretical view. This allows the mathematical results to be stated, proved, and understood in a much easier and elegant way. From the reviews of the Russian edition: "The main accent is shifted to the application . . . in geometrical optics, thermostatics and control theory, and not to the Hamiltonian mechanics only. . . . To make the book fairly self-contained, full details of basic definitions and all proofs are included. In this way, the majority of the text can be read without the prerequisite of a course in geometry. The excellent collection of examples illustrates the relatively hard and highly abstract mathematical theory and its hidden difficulties. . . . The book can rise real interest for specialists . . . . The . . . book is a significant input in the modern symplectic geometry and its applications." (Andrey Tsiganov, St. Petersburg State University)
A coherent introduction to the complete range of soliton theory including Hirota's method and Backlund transformations. Details physical applications of soliton theory with chapters on the peculiar wave patterns of the Andaman Sea, atmospheric phenomena, general relativity and Davydov solitons. Contains testing for full integrability, a discussion of the Painlevé technique, symmetries and conservation law.
The new edition of a classic text that concentrates on developing general methods for studying the behavior of classical systems, with extensive use of computation. We now know that there is much more to classical mechanics than previously suspected. Derivations of the equations of motion, the focus of traditional presentations of mechanics, are just the beginning. This innovative textbook, now in its second edition, concentrates on developing general methods for studying the behavior of classical systems, whether or not they have a symbolic solution. It focuses on the phenomenon of motion and makes extensive use of computer simulation in its explorations of the topic. It weaves recent discoveries in nonlinear dynamics throughout the text, rather than presenting them as an afterthought. Explorations of phenomena such as the transition to chaos, nonlinear resonances, and resonance overlap to help the student develop appropriate analytic tools for understanding. The book uses computation to constrain notation, to capture and formalize methods, and for simulation and symbolic analysis. The requirement that the computer be able to interpret any expression provides the student with strict and immediate feedback about whether an expression is correctly formulated. This second edition has been updated throughout, with revisions that reflect insights gained by the authors from using the text every year at MIT. In addition, because of substantial software improvements, this edition provides algebraic proofs of more generality than those in the previous edition; this improvement permeates the new edition.
This volume contains papers based on some of the talks given at the NSF-CBMS conference on ``The Geometrical Study of Differential Equations'' held at Howard University (Washington, DC). The collected papers present important recent developments in this area, including the treatment of nontransversal group actions in the theory of group invariant solutions of PDEs, a method for obtaining discrete symmetries of differential equations, the establishment of a group-invariant version of the variational complex based on a general moving frame construction, the introduction of a new variational complex for the calculus of difference equations and an original structural investigation of Lie-Backlund transformations. The book opens with a modern and illuminating overview of Lie's line-sphere correspondence and concludes with several interesting open problems arising from symmetry analysis of PDEs. It offers a rich source of inspiration for new or established researchers in the field. This book can serve nicely as a companion volume to a forthcoming book written by the principle speaker at the conference, Professor Niky Kamran, to be published in the AMS series, CBMS Regional Conference Series in Mathematics.
Sub-Riemannian geometry is the geometry of a world with nonholonomic constraints. In such a world, one can move, send and receive information only in certain admissible directions but eventually can reach every position from any other. In the last two decades sub-Riemannian geometry has emerged as an independent research domain impacting on several areas of pure and applied mathematics, with applications to many areas such as quantum control, Hamiltonian dynamics, robotics and Lie theory. This comprehensive introduction proceeds from classical topics to cutting-edge theory and applications, assuming only standard knowledge of calculus, linear algebra and differential equations. The book may serve as a basis for an introductory course in Riemannian geometry or an advanced course in sub-Riemannian geometry, covering elements of Hamiltonian dynamics, integrable systems and Lie theory. It will also be a valuable reference source for researchers in various disciplines.
Nonlinear structural dynamic systems which are multi-degree of freedom systems involve, for instance, matrix dynamic equilibrium equations, which can be of various order up to very high order. In these equations, the nonlinear quantities can be dependent on time and other terms, such as scalar variables, which are dependent on time. Frequency response and response time derivatives would also, of course, be involved. Nonlinear terms can account for dissipative phenomena and can be due to other physical phenomena. In fact, many engineering structures involve time-dependent properties such as, stiffness elements of specific structural components which can change according to the stress level. Other examples of dynamic elements of nonlinear structural systems can include system mass and damping distribution elements which evolve with time, such as railway or highway bridges and other structures, which interact with external agencies generating the system motion (for example, trains, a queue of vehicles, or other external agencies.) This volume is a rather comprehensive treatment of many of the techniques and methods which are utilized for the analysis of nonlinear structural dynamic systems.
Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems. Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynamics, and dissipation-induced instabilities are treated with the use of the theory of Krein and Pontryagin space, index theory, the theory of multi-parameter eigenvalue problems and modern asymptotic and perturbative approaches. Each chapter contains mechanical and physical examples, and the combination of advanced material and more tutorial elements makes this book attractive for both experts and non-specialists keen to expand their knowledge on modern methods and trends in stability theory. Contents 1. Surprising Instabilities of Simple Elastic Structures, Davide Bigoni, Diego Misseroni, Giovanni Noselli and Daniele Zaccaria. 2. WKB Solutions Near an Unstable Equilibrium and Applications, Jean-François Bony, Setsuro Fujiié, Thierry Ramond and Maher Zerzeri, partially supported by French ANR project NOSEVOL. 3. The Sign Exchange Bifurcation in a Family of Linear Hamiltonian Systems, Richard Cushman, Johnathan Robbins and Dimitrii Sadovskii. 4. Dissipation Effect on Local and Global Fluid-Elastic Instabilities, Olivier Doaré. 5. Tunneling, Librations and Normal Forms in a Quantum Double Well with a Magnetic Field, Sergey Yu. Dobrokhotov and Anatoly Yu. Anikin. 6. Stability of Dipole Gap Solitons in Two-Dimensional Lattice Potentials, Nir Dror and Boris A. Malomed. 7. Representation of Wave Energy of a Rotating Flow in Terms of the Dispersion Relation, Yasuhide Fukumoto, Makoto Hirota and Youichi Mie. 8. Determining the Stability Domain of Perturbed Four-Dimensional Systems in 1:1 Resonance, Igor Hoveijn and Oleg N. Kirillov. 9. Index Theorems for Polynomial Pencils, Richard Kollár and Radomír Bosák. 10. Investigating Stability and Finding New Solutions in Conservative Fluid Flows Through Bifurcation Approaches, Paolo Luzzatto-Fegiz and Charles H.K. Williamson. 11. Evolution Equations for Finite Amplitude Waves in Parallel Shear Flows, Sherwin A. Maslowe. 12. Continuum Hamiltonian Hopf Bifurcation I, Philip J. Morrison and George I. Hagstrom. 13. Continuum Hamiltonian Hopf Bifurcation II, George I. Hagstrom and Philip J. Morrison. 14. Energy Stability Analysis for a Hybrid Fluid-Kinetic Plasma Model, Philip J. Morrison, Emanuele Tassi and Cesare Tronci. 15. Accurate Estimates for the Exponential Decay of Semigroups with Non-Self-Adjoint Generators, Francis Nier. 16. Stability Optimization for Polynomials and Matrices, Michael L. Overton. 17. Spectral Stability of Nonlinear Waves in KdV-Type Evolution Equations, Dmitry E. Pelinovsky. 18. Unfreezing Casimir Invariants: Singular Perturbations Giving Rise to Forbidden Instabilities, Zensho Yoshida and Philip J. Morrison. About the Authors Oleg N. Kirillov has been a Research Fellow at the Magneto-Hydrodynamics Division of the Helmholtz-Zentrum Dresden-Rossendorf in Germany since 2011. His research interests include non-conservative stability problems of structural mechanics and physics, perturbation theory of non-self-adjoint boundary eigenvalue problems, magnetohydrodynamics, friction-induced oscillations, dissipation-induced instabilities and non-Hermitian problems of optics and microwave physics. Since 2013 he has served as an Associate Editor for the journal Frontiers in Mathematical Physics. Dmitry E. Pelinovsky has been Professor at McMaster University in Canada since 2000. His research profile includes work with nonlinear partial differential equations, discrete dynamical systems, spectral theory, integrable systems, and numerical analysis. He served as the guest editor of the special issue of the journals Chaos in 2005 and Applicable Analysis in 2010. He is an Associate Editor of the journal Communications in Nonlinear Science and Numerical Simulations. This book is devoted to the problems of spectral analysis, stability and bifurcations arising from the nonlinear partial differential equations of modern physics. Leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics present state-of-the-art approaches to a wide spectrum of new challenging stability problems. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynamics and dissipation-induced instabilities will be treated with the use of the theory of Krein and Pontryagin space, index theory, the theory of multi-parameter eigenvalue problems and modern asymptotic and perturbative approaches. All chapters contain mechanical and physical examples and combine both tutorial and advanced sections, making them attractive both to experts in the field and non-specialists interested in knowing more about modern methods and trends in stability theory.
NEEDs '92 was held in Dubna, Russia in July 1992. This set of proceedings compiles the lectures and short contributions on the soliton theory and its applications presented during the conference. The topics covered included the most recent results on relevant problems of nonlinear evolution systems such as: Multidimensional Integrable Systems, Geometric and Algebraic Methods, Painleve Property, Lie-Backlund Symmetries, Spectral Methods, Solitons and Coherent Structures, Computational Methods, Quantum Field and String Theories, Nonlinear Optics and Hydrodynamics, Condensed Matter etc. The extent of coverage for these important topics makes this book useful, informative and insighful for the mathematics and theoretical physics community, both the senior researches and those just entering the field.
IAU Symposium 127 was held in Princeton on May 28-31, 1986, at the Institute for Advanced Study. There were 150 participants from 19 countries. This was the first IAU Symposium devoted exclusively to elliptical galaxies. The last decade has been a period of exceptionally rapid progress regard ing our understanding of elliptical galaxies, driven on the observational side by a wealth of new photometric and spectroscopic data, and on the theoretical side by the recognition that ellipticals are slowly rotating triaxial systems, instead of rotationally flattened bodies. The 30 invited speakers reviewed all aspects of this progress, its consequences, and the major outstanding problems. Nearly 80 poster contributions were displayed for the duration of the meeting. These contained many of the most recent developments. The first part of these Proceedings contains the written versions of the invited reviews and the summary, in the order of their presentation. The accompanying discussions are based on the written versions of questions and answers as handed in by the participants. The second part of this book is devoted to the poster contribu tions. They have been grouped in a thematic order, proceeding from morphology to theory. Indices of objects, subjects, and names are provided. Unfortunately, none of the invited participants from the USSR were able to attend the Symposium. The Proceedings include the written versions of the planned contributions by Popov and Polyachenko.