Download Free Hamiltonian Cycle Problem And Markov Chains Book in PDF and EPUB Free Download. You can read online Hamiltonian Cycle Problem And Markov Chains and write the review.

This research monograph summarizes a line of research that maps certain classical problems of discrete mathematics and operations research - such as the Hamiltonian Cycle and the Travelling Salesman Problems - into convex domains where continuum analysis can be carried out. Arguably, the inherent difficulty of these, now classical, problems stems precisely from the discrete nature of domains in which these problems are posed. The convexification of domains underpinning these results is achieved by assigning probabilistic interpretation to key elements of the original deterministic problems. In particular, the approaches summarized here build on a technique that embeds Hamiltonian Cycle and Travelling Salesman Problems in a structured singularly perturbed Markov decision process. The unifying idea is to interpret subgraphs traced out by deterministic policies (including Hamiltonian cycles, if any) as extreme points of a convex polyhedron in a space filled with randomized policies. The above innovative approach has now evolved to the point where there are many, both theoretical and algorithmic, results that exploit the nexus between graph theoretic structures and both probabilistic and algebraic entities of related Markov chains. The latter include moments of first return times, limiting frequencies of visits to nodes, or the spectra of certain matrices traditionally associated with the analysis of Markov chains. However, these results and algorithms are dispersed over many research papers appearing in journals catering to disparate audiences. As a result, the published manuscripts are often written in a very terse manner and use disparate notation, thereby making it difficult for new researchers to make use of the many reported advances. Hence the main purpose of this book is to present a concise and yet easily accessible synthesis of the majority of the theoretical and algorithmic results obtained so far. In addition, the book discusses numerous open questions and problems that arise from this body of work and which are yet to be fully solved. The approach casts the Hamiltonian Cycle Problem in a mathematical framework that permits analytical concepts and techniques, not used hitherto in this context, to be brought to bear to further clarify both the underlying difficulty of NP-completeness of this problem and the relative exceptionality of truly difficult instances. Finally, the material is arranged in such a manner that the introductory chapters require very little mathematical background and discuss instances of graphs with interesting structures that motivated a lot of the research in this topic. More difficult results are introduced later and are illustrated with numerous examples.
Most of the 26 papers are research reports on probability, statistics, gambling, game theory, Markov decision processes, set theory, and logic. But they also include reviews on comparing experiments, games of timing, merging opinions, associated memory models, and SPLIF's; historical views of Carnap, von Mises, and the Berkeley Statistics Department; and a brief history, appreciation, and bibliography of Berkeley professor Blackwell. A sampling of titles turns up The Hamiltonian Cycle Problem and Singularly Perturbed Markov Decision Process, A Pathwise Approach to Dynkin Games, The Redistribution of Velocity: Collision and Transformations, Casino Winnings at Blackjack, and Randomness and the Foundations of Probability. No index. Annotation copyrighted by Book News, Inc., Portland, OR
"Controlled Markov Chains, Graphs & Hamiltonicity" summarizes a line of research that maps certain classical problems of discrete mathematics--such as the Hamiltonian cycle and the Traveling Salesman problems--into convex domains where continuum analysis can be carried out. (Mathematics)
There has been much recent progress in approximation algorithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. In discrete (or combinatorial) optimization many approaches have been developed recently that link the discrete universe to the continuous universe through geomet ric, analytic, and algebraic techniques. Such techniques include global optimization formulations, semidefinite programming, and spectral theory. As a result new ap proximate algorithms have been discovered and many new computational approaches have been developed. Similarly, for many continuous nonconvex optimization prob lems, new approximate algorithms have been developed based on semidefinite pro gramming and new randomization techniques. On the other hand, computational complexity, originating from the interactions between computer science and numeri cal optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty. The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable. The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions. A conference on Approximation and Complexity in Numerical Optimization: Con tinuous and Discrete Problems was held during February 28 to March 2, 1999 at the Center for Applied Optimization of the University of Florida.
The book presents new methods of asymptotic analysis for nonlinearly perturbed semi-Markov processes with a finite phase space. These methods are based on special time-space screening procedures for sequential phase space reduction of semi-Markov processes combined with the systematical use of operational calculus for Laurent asymptotic expansions. Effective recurrent algorithms are composed for getting asymptotic expansions, without and with explicit upper bounds for remainders, for power moments of hitting times, stationary and conditional quasi-stationary distributions for nonlinearly perturbed semi-Markov processes. These results are illustrated by asymptotic expansions for birth-death-type semi-Markov processes, which play an important role in various applications. The book will be a useful contribution to the continuing intensive studies in the area. It is an essential reference for theoretical and applied researchers in the field of stochastic processes and their applications that will contribute to continuing extensive studies in the area and remain relevant for years to come.
This book gathers a selection of peer-reviewed papers presented at the International Conference on Operations Research (OR 2019), which was held at Technische Universität Dresden, Germany, on September 4-6, 2019, and was jointly organized by the German Operations Research Society (GOR) the Austrian Operations Research Society (ÖGOR), and the Swiss Operational Research Society (SOR/ASRO). More than 600 scientists, practitioners and students from mathematics, computer science, business/economics and related fields attended the conference and presented more than 400 papers in plenary presentations, parallel topic streams, as well as special award sessions. The respective papers discuss classical mathematical optimization, statistics and simulation techniques. These are complemented by computer science methods, and by tools for processing data, designing and implementing information systems. The book also examines recent advances in information technology, which allow big data volumes to be processed and enable real-time predictive and prescriptive business analytics to drive decisions and actions. Lastly, it includes problems modeled and treated while taking into account uncertainty, risk management, behavioral issues, etc.
Mathematical models are often used to describe complex phenomena such as climate change dynamics, stock market fluctuations, and the Internet. These models typically depend on estimated values of key parameters that determine system behavior. Hence it is important to know what happens when these values are changed. The study of single-parameter deviations provides a natural starting point for this analysis in many special settings in the sciences, engineering, and economics. The difference between the actual and nominal values of the perturbation parameter is small but unknown, and it is important to understand the asymptotic behavior of the system as the perturbation tends to zero. This is particularly true in applications with an apparent discontinuity in the limiting behavior?the so-called singularly perturbed problems. Analytic Perturbation Theory and Its Applications includes a comprehensive treatment of analytic perturbations of matrices, linear operators, and polynomial systems, particularly the singular perturbation of inverses and generalized inverses. It also offers original applications in Markov chains, Markov decision processes, optimization, and applications to Google PageRank? and the Hamiltonian cycle problem as well as input retrieval in linear control systems and a problem section in every chapter to aid in course preparation.
Computational Complexity of Counting and Sampling provides readers with comprehensive and detailed coverage of the subject of computational complexity. It is primarily geared toward researchers in enumerative combinatorics, discrete mathematics, and theoretical computer science. The book covers the following topics: Counting and sampling problems that are solvable in polynomial running time, including holographic algorithms; #P-complete counting problems; and approximation algorithms for counting and sampling. First, it opens with the basics, such as the theoretical computer science background and dynamic programming algorithms. Later, the book expands its scope to focus on advanced topics, like stochastic approximations of counting discrete mathematical objects and holographic algorithms. After finishing the book, readers will agree that the subject is well covered, as the book starts with the basics and gradually explores the more complex aspects of the topic. Features: Each chapter includes exercises and solutions Ideally written for researchers and scientists Covers all aspects of the topic, beginning with a solid introduction, before shifting to computational complexity’s more advanced features, with a focus on counting and sampling
This book presents recent advances in optimization and control methods with applications to industrial engineering and construction management. It consists of 15 chapters authored by recognized experts in a variety of fields including control and operation research, industrial engineering and project management. Topics include numerical methods in unconstrained optimization, robust optimal control problems, set splitting problems, optimum confidence interval analysis, a monitoring networks optimization survey, distributed fault detection, nonferrous industrial optimization approaches, neural networks in traffic flows, economic scheduling of CCHP systems, a project scheduling optimization survey, lean and agile construction project management, practical construction projects in Hong Kong, dynamic project management, production control in PC4P and target contracts optimization. The book offers a valuable reference work for scientists, engineers, researchers and practitioners in industrial engineering and construction management.