Download Free Halogen Bonding In Supramolecular And Solid State Chemistry Book in PDF and EPUB Free Download. You can read online Halogen Bonding In Supramolecular And Solid State Chemistry and write the review.

The halogen bond may be considered as a special case of sigma-hole bonding, wherein an electron donor interacts with the electrophilic region of a halogen atom. Within this broader picture, sigma-hole bonding can encompass a range of non-covalent interactions which are named after the atom bearing the electrophilic region, also known as the sigma-hole. This Faraday Discussion unites experimentalists and theoreticians, who are pushing the applicability of this broad class of interactions far beyond only the halogens. The book develops a fundamental understanding of key aspects of non-covalent interactions in solid-state materials, solution chemistry, biochemistry and the gas phase.
The nature and directionality of halogen bonding; the sigma hole, by Timothy Clark, Peter Politzer, Jane S. Murray Solid-state NMR study of halogen-bonded adducts, by David Bryce Infrared and Raman measurements of halogen bonding in cryogenic solutions, by Wouter Herrebout Halogen bonding in the gas phase, by Anthony C. Legon Halogen bonding in solution, Mate Erdelyi Unconventional motifs for halogen bonding, by Kari Rissanen Halogen bonding in supramolecular synthesis, Christer Aakeröy Halogen bond in synthetic organic chemistry, Stefan M. Huber Anion recognition in solution via halogen bonding, Mark S. Taylor Anion transport with halogen bonds, by Stefan Matile Halogen bonding in silico drug design, by Pavel Hobza, Kevin Riley Biological halogen bonds: An old dog with new tricks, by P. Shing Ho Principles and applications of halogen bonding in medicinal chemistry, by Frank M. Boeckler Halogen bond in molecular conductors and magnets, by Marc Foumigué Halogen bonding towards design of organic phosphors, by Wei Jun Jin Halogen bond in photoresponsive materials, by Pierangelo Metrangolo, Giuseppe Resnati, Arri Priimagi
A comprehensive collection of the applications of Nuclear Magnetic Resonance (NMR), Magnetic Resonance Imaging (MRI) and Electron-Spin Resonance (ESR). Covers the wide ranging disciplines in which these techniques are used: * Chemistry; * Biological Sciences; * Pharmaceutical Sciences; * Medical uses; * Marine Science; * Materials Science; * Food Science. Illustrates many techniques through the applications described, e.g.: * High resolution solid and liquid state NMR; * Low resolution NMR, especially important in food science; * Solution State NMR, especially important in pharmaceutical sciences; * Magnetic Resonance Imaging, especially important for medical uses; * Electron Spin Resonance, especially important for spin-labelling in food, marine and medical studies.
This book covers the advances in the studies of hydrogen-bonding-driven supramolecular systems made over the past decade. It is divided into four parts, with the first introducing the basics of hydrogen bonding and important hydrogen bonding patterns in solution as well as in the solid state. The second part covers molecular recognition and supramolecular structures driven by hydrogen bonding. The third part introduces the formation of hollow and giant macrocycles directed by hydrogen bonding, while the last part summarizes hydrogen bonded supramolecular polymers. This book is designed to bring together in a single volume the many important aspects of hydrogen bonding supramolecular chemistry and will be a valuable resource for graduates and researchers working in supramolecular and related sciences. Zhan-Ting Li, PhD, is a Professor of Organic Chemistry at the Department of Chemistry, Fudan University, China. Li-Zhu Wu, PhD, is a Professor of Organic Chemistry at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, China.
Long-awaited on the importance of halogen bonding in solution, demonstrating the specific advantages in various fields - from synthesis and catalysis to biochemistry and electrochemistry! Halogen bonding (XB) describes the interaction between an electron donor and the electrophilic region of a halogen atom. Its applicability for molecular recognition processes long remained unappreciated and has mostly been studied in solid state until recently. As most physiological processes and chemical reactions take place in solution, investigations in solutions are of highest relevance for its use in organic synthesis and catalysis, pharmaceutical chemistry and drug design, electrochemistry, as well as material synthesis. Halogen Bonding in Solution gives a concise overview of halogen bond interactions in solution. It discusses the history and electronic origin of halogen bonding and summarizes all relevant examples of its application in organocatalysis. It describes the use of molecular iodine in catalysis and industrial applications, as well as recent developments in anion transport and binding. Hot topic: Halogen bonding is an important interaction between molecules or within a molecule. The field has developed considerably in recent years, with numerous different approaches and applications having been published. Unique: There are several books on halogen bonding in solid state available, but this will be the first one focused on halogen bonding in solution. Multi-disciplinary: Summarizes the history and nature of halogen bonding in solution as well as applications in catalysis, anion recognition, biochemistry, and electrochemistry. Aimed at facilitating exciting future developments in the field, Halogen Bonding in Solution is a valuable source of information for researchers and professionals working in the field of supramolecular chemistry, catalysis, biochemistry, drug design, and electrochemistry.
With contributions by numerous experts
The halogen bond has recently risen in prominence as a non-covalent interaction for use in supramolecular chemistry, allowing for the rational design of materials, pharmaceuticals, and functional molecules. The occurrence of the ?-hole opposite to the C-X covalent bond (X = F, Cl, Br, I) renders the halogen bond a highly directional and tuneable interaction, offering desirable features to crystal engineers. The halogen bond can be divided into its two components: the halogen bond donor bearing the halogen atom, and the electron-rich halogen bond acceptor. In this thesis, we investigate the nature of the halogen bond, its role in supramolecular assembly and impact on the local dynamics, along with developing synthetic methods to prepare this class of materials. We begin by fully characterizing the halogen bond donor by using 35Cl ultra-wideline solid-state nuclear magnetic resonance (NMR) spectroscopy on a series of single-component chloronitriles exhibiting the C-Cl···N halogen bond. We then perform the first modern nuclear quadrupole resonance (NQR) investigations of the halogen bond, observing the 79/81Br and 127I nuclei in a series of cocrystals exhibiting the C-Br···N and C-I···N halogen bond, respectively. Computational results attribute the observed increases in the quadrupolar coupling constants (CQ) to a reduction in the carbon-halogen ?-bonding contribution to V33 and an increase in the lone-pair and core orbital contributions, providing the first model of the electronic changes occurring on the halogen bond donor upon the formation of the halogen bond. Attention is then turned on characterizing the halogen bond acceptor and its surrounding environment, beginning by investigating a solid-state NMR approach relying on the 19F nucleus to characterize perfluorinated cocrystals. This strategy has reduced analysis times from hours to minutes while providing higher sensitivity and resolution, with the resulting chemical shifts permitting the unambiguous identification of the halogen bond and allowing for the refinement of X-ray crystal structures. The halogen bond acceptor is then investigated in a series of isomorphous dimers exhibiting both the halogen bond and hydrogen bond in the C≡C-I···X-···H-N+ motif, revealing the halogen bond's relative contribution to the electric field gradient increasing in the order of Cl- > Br- > I-, contrasting the contributions of the hydrogen bond. We then explore the impact of the halogen bond on the surrounding environment, using the rotating methyl groups of 2,3,5,6-tetramethylpyrazine as a model. Upon the introduction of a halogen bond, we observe a reduction in the rotational energy barrier of 56% on average, overshadowing the 36% reduction observed in the hydrogen bonded cocrystals. This is the first instance of the halogen bond directly catalyzing the local dynamics, coining the term "dynamics catalyst". These results provide an effective strategy of enhancing the dynamics in molecular systems, such as molecular machines, supramolecular catalyst, as well as correcting the faulty dynamics encountered in diseased proteins. The role of halogen bonding in crystal engineering is then explored, reporting the first supramolecular triangle, a series of discrete charged dimers, and supramolecular architectures built from 1,3,5-tri(iodoethynyl)-2,4,6-trifluorobenzene, with the potential of creating fully organic porous structures for gas absorption. Mechanochemistry is then investigated as a synthetic method, allowing for the preparation of cocrystals featuring 3-iodoethynylbenzoic acid as the donor, with the resulting structures exhibiting concurrent halogen and hydrogen bonding. Mechanochemical ball milling is shown to reduce preparation times of powdered cocrystals from days to a single hour, while using a fraction of the organic solvent. Lastly, we pioneer cosublimation as a solvent-free synthetic technique for rapidly preparing halogen bonded cocrystals, yielding quality single crystals within a few hours, and a microcrystalline product within 15 minutes. Among its advantages, cosublimation offers a significant acceleration of discovery, while eliminating the environmental footprint associated with conventional synthetic methods.
A one-stop, comprehensive, and thoroughly updated resource for students, professors, and researchers alike Thoroughly revised and updated, the Third Edition of Supramolecular Chemistry delivers a comprehensive and integrated approach to this rapidly evolving and quickly expanding field. Distinguished professors and authors Jonathan Steed and Jerry Atwood provide readers with a broad and exhaustive resource that assumes little in the way of prior knowledge of supramolecular chemistry. Extensive new content on cutting edge research throughout the field including molecular machines and the mechanical bond, mechanochemistry, halogen bonding, and crystal nucleation accompanies full-color imagery and study problems designed to help students understand and apply the principles introduced within the book. Additional material is provided in the supplementary online resources, including solutions to the student exercises and PowerPoint slides of the figures in the book. Supramolecular Chemistry, Third Edition also includes: The latest research and developments reported over the last decade A unique “key references” system that highlights crucial reviews and primary literature A description of key experimental techniques included in accessible “boxes” for the non-expert Exercises and problems for students, complete with online solutions Full-color illustrations and imagery designed to facilitate learning and retention of the key concepts and state-of-the art of the field Perfect for undergraduate and postgraduate students taking courses on supramolecular chemistry, the Third Edition of Supramolecular Chemistry also belongs on the bookshelves of all researchers in this, and any closely related, fields. Academics, in particular postdoctoral students and professors, will benefit significantly from this text.
Anion recognition plays a critical role in a range of biological processes, and a variety of receptors and carriers can be found throughout the natural world. Chemists working in the area of supramolecular chemistry have created a range of anion receptors, drawing inspiration from nature as well as their own inventive processes. This book traces the origins of anion recognition chemistry as a unique sub-field in supramolecular chemistry while illustrating the basic approaches currently being used to effect receptor design. The combination of biological overview and summary of current synthetic approaches provides a coverage that is both comprehensive and comprehensible. First, the authors detail the key design motifs that have been used to generate synthetic receptors and which are likely to provide the basis for further developments. They also highlight briefly some of the features that are present in naturally occurring anion recognition and transport systems and summarise the applications of anion recognition chemistry. Providing as it does a detailed review for practitioners in the field and a concise introduction to the topic for newcomers, Anion Receptor Chemistry reflects the current state of the art. Fully referenced and illustrated in colour, it is a welcome addition to the literature.
Iodine Catalysis in Organic Synthesis The first book of its kind to highlight iodine as a sustainable alternative to conventional transition metal catalysis Iodine Catalysis in Organic Synthesis provides detailed coverage of recent advances in iodine chemistry and catalysis, focusing on the utilization of various iodine-containing compounds as oxidative catalysts. Featuring contributions by an international panel of leading research chemists, this authoritative volume explores the development of environmentally benign organic reactions and summarizes catalytic transformations of molecular iodine and iodine compounds such as hypervalent organoiodine and inorganic iodine salts. Readers are first introduced to the history of iodine chemistry, the conceptual background of homogeneous catalysis, and the benefits of iodine catalysis in comparison with transition metals. Next, chapters organized by reaction type examine enantioselective transformations, catalytic reactions involving iodine, catalyst states, oxidation in iodine and iodine catalyses, and catalytic reactions based on halogen bonding. Practical case studies and real-world examples of different applications in organic synthesis and industry are incorporated throughout the text. An invaluable guide for synthetic chemists in both academic and industrial laboratories, Iodine Catalysis in Organic Synthesis: Provides a thorough overview of typical iodine-catalyzed reactions, catalyst systems, structures, and reactivity Explores promising industrial applications of iodine-based reagents for organic synthesis Highlights the advantages iodine catalysis has over classical metal-catalyzed reactions Discusses sustainable and eco-friendly methods in hypervalent iodine chemistry Edited by two world authorities on the catalytic applications of organoiodine compounds, Iodine Catalysis in Organic Synthesis is required reading for catalytic, organic, and organometallic chemists, medicinal and pharmaceutical chemists, industrial chemists, and academic researchers and advanced students in relevant fields.