Download Free Guided Electromagnetic Waves Properties And Analysis Book in PDF and EPUB Free Download. You can read online Guided Electromagnetic Waves Properties And Analysis and write the review.

The development of efficient techniques for the rigorous modelling of electromagnetic phenomena is a key factor in determining the progress in many technical area from microwave engineering to X-Ray technology. This book presents a class of numerical techniques for the analysis of discrete spectra of electrodynamic operators, highlights their advantages and drawbacks, and discusses their potential for solving practical problems. Examples of the application of some of the methods to solve both field theory and engineering problems are included.
This book presents a detailed analytical and computational electromagnetic (CEM) treatment of guided electromagnetic (EM) wave propagation in independently time-varying dielectric medium, using the finite-difference time-domain (FDTD) simulation technique. The contents provide an extensive literature review, explaining the importance of time-varying media (temporal photonic crystals) in new exotic applications that involve rich EM phenomena such as parametric amplification, frequency conversion, non-reciprocal gain, electromagnetic energy accumulation, temporal coating and temporal aiming (beam-forming). A one-dimensional (1D) FDTD simulation paradigm is then formulated in this book, starting from Maxwell's equations and boundary conditions. The issues of hard/soft source realizations, perfectly matched layers (PMLs), choice of simulation parameters (cell-size and time-stepping) are thoroughly explained through new visualization tools. This book provides a unique combination of rigorous analytical techniques, several FDTD simulation examples with reproducible source-codes, and new visualization/post-processing mechanisms. The contents of this book should prove to be useful for students, research scholars, scientists and engineers, working in the field of applied electromagnetics, and aiming to design cutting-edge microwave/optical devices based on time-varying medium.
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, and finally, the biological effects and medical applications of electromagnetic fields.
"Co-published with Oxford University Press Long considered the most comprehensive account of electromagnetic theory and analytical methods for solving waveguide and cavity problems, this new Second Edition has been completely revised and thoroughly updated -- approximately 40% new material!Packed with examples and applications FIELD THEORY OF GUIDED WAVES provides solutions to a large number of practical structures of current interest. The book includes an exceptionally complete discussion of scalar and Dyadic Green functions. Both a valuable review and source of basic information on applied mathematical topics and a hands-on source for solution methods and techniques, this book belongs on the desk of all engineers working in microwave and antenna systems!" Sponsored by: IEEE Antennas and Propagation Society
Here are the newest methods for using computers to design linear antennas and microwave printed circuits. Learn how to use supercomputers to apply the FD-TD and the FE methods, and how to develop computation programs. Includes the methods of antenna analysis with integral equation, physical optics approximation, electromagnetic wave scattering due to random surface, eigen function expansion, and rectangular boundary division. Features practice problems and answers, plus examples of actual calculation programs. With 132 diagrams and 1121 equations.
Electromagnetic Radiation, Scattering, and Diffraction Discover a graduate-level text for students specializing in electromagnetic wave radiation, scattering, and diffraction for engineering applications In Electromagnetic Radiation, Scattering and Diffraction, distinguished authors Drs. Prabhakar H. Pathak and Robert J. Burkholder deliver a thorough exploration of the behavior of electromagnetic fields in radiation, scattering, and guided wave environments. The book tackles its subject from first principles and includes coverage of low and high frequencies. It stresses physical interpretations of the electromagnetic wave phenomena along with their underlying mathematics. The authors emphasize fundamental principles and provide numerous examples to illustrate the concepts contained within. Students with a limited undergraduate electromagnetic background will rapidly and systematically advance their understanding of electromagnetic wave theory until they can complete useful and important graduate-level work on electromagnetic wave problems. Electromagnetic Radiation, Scattering and Diffraction also serves as a practical companion for students trying to simulate problems with commercial EM software and trying to better interpret their results. Readers will also benefit from the breadth and depth of topics, such as: Basic equations governing all electromagnetic (EM) phenomena at macroscopic scales are presented systematically. Stationary and relativistic moving boundary conditions are developed. Waves in planar multilayered isotropic and anisotropic media are analyzed. EM theorems are introduced and applied to a variety of useful antenna problems. Modal techniques are presented for analyzing guided wave and periodic structures. Potential theory and Green's function methods are developed to treat interior and exterior EM problems. Asymptotic High Frequency methods are developed for evaluating radiation Integrals to extract ray fields. Edge and surface diffracted ray fields, as well as surface, leaky and lateral wave fields are obtained. A collective ray analysis for finite conformal antenna phased arrays is developed. EM beams are introduced and provide useful basis functions. Integral equations and their numerical solutions via the method of moments are developed. The fast multipole method is presented. Low frequency breakdown is studied. Characteristic modes are discussed. Perfect for graduate students studying electromagnetic theory, Electromagnetic Radiation, Scattering, and Diffraction is an invaluable resource for professional electromagnetic engineers and researchers working in this area.
This book is a first-year graduate text on electromagnetic fields and waves. It is the translated and revised edition of the Chinese version with the same title published by the Publishing House of Electronic Industry (PHEI) of China in 1994. The text is based on the graduate course lectures on "Advanced Elec trodynamics" given by the authors at Tsinghua University. More than 300 students from the Department of Electronic Engineering and the Depart ment of Applied Physics have taken this course during the last decade. Their particular fields are microwave and millimeterwave theory and technology, physical electronics, optoelectronics and engineering physics. As the title of the book shows, the texts and examples in the book concentrate mainly on electromagnetic theory related to microwaves and optoelectronics, or light wave technology. However, the book can also be used as an intermediate-level text or reference book on electromagnetic fields and waves for students and scientists engaged in research in neighboring fields.
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, and finally, the biological effects and medical applications of electromagnetic fields.
The book deals with the analysis of oscillations, mechanical and electromagnetic waves, and their use in medicine. Each chapter contains the theoretical basis and the use of relevant phenomena in medical practice. Description of oscillations is important for understanding waves and the nature of magnetic resonance. A chapter on mechanical waves describes the origin and properties of sound, infrasound and ultrasound, their medical applications, and perception of sound by human hearing. A chapter on electromagnetic waves examines their origin, properties, and applications in therapy and diagnostics. Subsequent chapters describe how interference and diffraction lead to applications like optical imaging, holography, virtual reality, and perception of light by human vision. Also addressed is how quantum properties of radiation helped develop the laser scalpel, fluorescence microscopy, spectroscopy, X-rays, and gamma radiation.
APlusPhysics: Your Guide to Regents Physics Essentials is a clear and concise roadmap to the entire New York State Regents Physics curriculum, preparing students for success in their high school physics class as well as review for high marks on the Regents Physics Exam. Topics covered include pre-requisite math and trigonometry; kinematics; forces; Newton's Laws of Motion, circular motion and gravity; impulse and momentum; work, energy, and power; electrostatics; electric circuits; magnetism; waves; optics; and modern physics. Featuring more than five hundred questions from past Regents exams with worked out solutions and detailed illustrations, this book is integrated with the APlusPhysics.com website, which includes online question and answer forums, videos, animations, and supplemental problems to help you master Regents Physics essentials. "The best physics books are the ones kids will actually read." Advance Praise for APlusPhysics Regents Physics Essentials: "Very well written... simple, clear engaging and accessible. You hit a grand slam with this review book." -- Anthony, NY Regents Physics Teacher. "Does a great job giving students what they need to know. The value provided is amazing." -- Tom, NY Regents Physics Teacher. "This was tremendous preparation for my physics test. I love the detailed problem solutions." -- Jenny, NY Regents Physics Student. "Regents Physics Essentials has all the information you could ever need and is much easier to understand than many other textbooks... it is an excellent review tool and is truly written for students." -- Cat, NY Regents Physics Student