Download Free Guide To The Literature Of Mathematics And Physics Book in PDF and EPUB Free Download. You can read online Guide To The Literature Of Mathematics And Physics and write the review.

This unique book complements traditional textbooks by providing a visual yet rigorous survey of the mathematics used in theoretical physics beyond that typically covered in undergraduate math and physics courses. The exposition is pedagogical but compact, and the emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions, alternative notations and jargon, and relevant facts and theorems. Special attention is given to detailed figures and geometric viewpoints. Certain topics which are well covered in textbooks, such as historical motivations, proofs and derivations, and tools for practical calculations, are avoided. The primary physical models targeted are general relativity, spinors, and gauge theories, with notable chapters on Riemannian geometry, Clifford algebras, and fiber bundles.
Expert treatment introduces semi-Riemannian geometry and its principal physical application, Einstein's theory of general relativity, using the Cartan exterior calculus as a principal tool. Prerequisites include linear algebra and advanced calculus. 2012 edition.
Have you ever wondered why the language of modern physics centres on geometry? Or how quantum operators and Dirac brackets work? What a convolution really is? What tensors are all about? Or what field theory and lagrangians are, and why gravity is described as curvature? This book takes you on a tour of the main ideas forming the language of modern mathematical physics. Here you will meet novel approaches to concepts such as determinants and geometry, wave function evolution, statistics, signal processing, and three-dimensional rotations. You will see how the accelerated frames of special relativity tell us about gravity. On the journey, you will discover how tensor notation relates to vector calculus, how differential geometry is built on intuitive concepts, and how variational calculus leads to field theory. You will meet quantum measurement theory, along with Green functions and the art of complex integration, and finally general relativity and cosmology. The book takes a fresh approach to tensor analysis built solely on the metric and vectors, with no need for one-forms. This gives a much more geometrical and intuitive insight into vector and tensor calculus, together with general relativity, than do traditional, more abstract methods. Don Koks is a physicist at the Defence Science and Technology Organisation in Adelaide, Australia. His doctorate in quantum cosmology was obtained from the Department of Physics and Mathematical Physics at Adelaide University. Prior work at the University of Auckland specialised in applied accelerator physics, along with pure and applied mathematics.
A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.
Having the right answer doesn't guarantee understanding. This book helps physics students learn to take an informed and intuitive approach to solving problems. It assists undergraduates in developing their skills and provides them with grounding in important mathematical methods.Starting with a review of basic mathematics, the author presents a thorough analysis of infinite series, complex algebra, differential equations, and Fourier series. Succeeding chapters explore vector spaces, operators and matrices, multi-variable and vector calculus, partial differential equations, numerical and complex analysis, and tensors. Additional topics include complex variables, Fourier analysis, the calculus of variations, and densities and distributions. An excellent math reference guide, this volume is also a helpful companion for physics students as they work through their assignments.
NATIONAL BESTSELLER • Inspired by the fantastic worlds of Star Trek, Star Wars, and Back to the Future, the renowned theoretical physicist and national bestselling author of The God Equation takes an informed, serious, and often surprising look at what our current understanding of the universe's physical laws may permit in the near and distant future. Teleportation, time machines, force fields, and interstellar space ships—the stuff of science fiction or potentially attainable future technologies? Entertaining, informative, and imaginative, Physics of the Impossible probes the very limits of human ingenuity and scientific possibility.
What really happens at the most fundamental levels of nature? Introducing Particle Physics explores the very frontiers of our knowledge, even showing how particle physicists are now using theory and experiment to probe our very concept of what is real. From the earliest history of the atomic theory through to supersymmetry, micro-black holes, dark matter, the Higgs boson, and the possibly mythical graviton, practising physicist and CERN contributor Tom Whyntie gives us a mind-expanding tour of cutting-edge science. Featuring brilliant illustrations from Oliver Pugh, Introducing Particle Physics is a unique tour through the most astonishing and challenging science being undertaken today.
Intended to follow the usual introductory physics courses, this book contains many original, lucid and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts to help guide students through the material.
For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.