Download Free Guide To Scientific Computing In C Book in PDF and EPUB Free Download. You can read online Guide To Scientific Computing In C and write the review.

This easy-to-read textbook/reference presents an essential guide to object-oriented C++ programming for scientific computing. With a practical focus on learning by example, the theory is supported by numerous exercises. Features: provides a specific focus on the application of C++ to scientific computing, including parallel computing using MPI; stresses the importance of a clear programming style to minimize the introduction of errors into code; presents a practical introduction to procedural programming in C++, covering variables, flow of control, input and output, pointers, functions, and reference variables; exhibits the efficacy of classes, highlighting the main features of object-orientation; examines more advanced C++ features, such as templates and exceptions; supplies useful tips and examples throughout the text, together with chapter-ending exercises, and code available to download from Springer.
This book introduces the reader to many of the problems of scientific computing and the wide variety of methods used for their solutions. It discusses basic approaches and stimulates an appreciation of the need for numerical methods in solving different types of problems. For each of the problems presented, the author provides some mathematical justification and examples. These serve as practical evidence and motivation for the reader to follow. Practical justification of the methods is provided through computer examples and exercises. The book includes an introduction to MATLAB, but the code used is not intended to exemplify sophisticated or robust pieces of software; it is purely illustrative of the method under discussion.
This book is an easy, concise but fairly complete introduction to ISO/ANSI C++ with special emphasis on object-oriented numeric computation. A user-defined numeric linear algebra library accompanies the book and can be downloaded from the web.
Scientific computing is a collection of tools, techniques and theories required to develop and solve mathematical models in science and engineering on a computer. This timely book provides the various skills and techniques needed in scientific computing. The topics range in difficulty from elementary to advanced, and all the latest fields in scientific computing are covered such as matrices, numerical analysis, neural networks, genetic algorithms, etc.Presented in the format of problems and detailed solutions, important concepts and techniques are introduced and developed. Many problems include software simulations. Algorithms have detailed implementations in C++ or Java. This book will prove to be invaluable not only to students and research workers in the fields of scientific computing, but also to teachers of this subject who will find this text useful as a supplement.The topics discussed in this book are part of the e-learning and distance learning courses conducted by the International School of Scientific Computing, South Africa.
Makes Numerical Programming More Accessible to a Wider Audience Bearing in mind the evolution of modern programming, most specifically emergent programming languages that reflect modern practice, Numerical Programming: A Practical Guide for Scientists and Engineers Using Python and C/C++ utilizes the author’s many years of practical research and teaching experience to offer a systematic approach to relevant programming concepts. Adopting a practical, broad appeal, this user-friendly book offers guidance to anyone interested in using numerical programming to solve science and engineering problems. Emphasizing methods generally used in physics and engineering—from elementary methods to complex algorithms—it gradually incorporates algorithmic elements with increasing complexity. Develop a Combination of Theoretical Knowledge, Efficient Analysis Skills, and Code Design Know-How The book encourages algorithmic thinking, which is essential to numerical analysis. Establishing the fundamental numerical methods, application numerical behavior and graphical output needed to foster algorithmic reasoning, coding dexterity, and a scientific programming style, it enables readers to successfully navigate relevant algorithms, understand coding design, and develop efficient programming skills. The book incorporates real code, and includes examples and problem sets to assist in hands-on learning. Begins with an overview on approximate numbers and programming in Python and C/C++, followed by discussion of basic sorting and indexing methods, as well as portable graphic functionality Contains methods for function evaluation, solving algebraic and transcendental equations, systems of linear algebraic equations, ordinary differential equations, and eigenvalue problems Addresses approximation of tabulated functions, regression, integration of one- and multi-dimensional functions by classical and Gaussian quadratures, Monte Carlo integration techniques, generation of random variables, discretization methods for ordinary and partial differential equations, and stability analysis This text introduces platform-independent numerical programming using Python and C/C++, and appeals to advanced undergraduate and graduate students in natural sciences and engineering, researchers involved in scientific computing, and engineers carrying out applicative calculations.
Numerical Computation Using C is a four-chapter text guide for learning C language from the numerical analysis viewpoint. C is a general-purpose language that has been used in systems programming. The first chapter discusses the basic principles, logic, operators, functions, arrays, and structures of C language. The next two chapters deal with the uses of the so-called pointers in the C language, which is a variable that contains the address of some object in memory. These chapters also elaborate on several constructs to show how the use of C language can be fine-tuned. The last chapter highlights the practical aspects of C language. This book will be of value to computer scientists and mathematicians.
Taking an interdisciplinary approach, this new book provides a modern introduction to scientific computing, exploring numerical methods, computer technology, and their interconnections, which are treated with the goal of facilitating scientific research across all disciplines. Each chapter provides an insightful lesson and viewpoints from several subject areas are often compounded within a single chapter. Written with an eye on usefulness, longevity, and breadth, Lessons in Scientific Computing will serve as a "one stop shop" for students taking a unified course in scientific computing, or seeking a single cohesive text spanning multiple courses. Features: Provides a unique combination of numerical analysis, computer programming, and computer hardware in a single text Includes essential topics such as numerical methods, approximation theory, parallel computing, algorithms, and examples of computational discoveries in science Not wedded to a specific programming language
The core of scientific computing is designing, writing, testing, debugging and modifying numerical software for application to a vast range of areas: from graphics, meteorology and chemistry to engineering, biology and finance. Scientists, engineers and computer scientists need to write good code, for speed, clarity, flexibility and ease of re-use. Oliveira and Stewart's style guide for numerical software points out good practices to follow, and pitfalls to avoid. By following their advice, readers will learn how to write efficient software, and how to test it for bugs, accuracy and performance. Techniques are explained with a variety of programming languages, and illustrated with two extensive design examples, one in Fortran 90 and one in C++: other examples in C, C++, Fortran 90 and Java are scattered throughout the book. This manual of scientific computing style will be an essential addition to the bookshelf and lab of everyone who writes numerical software.
This easy-to-understand textbook presents a modern approach to learning numerical methods (or scientific computing), with a unique focus on the modeling and applications of the mathematical content. Emphasis is placed on the need for, and methods of, scientific computing for a range of different types of problems, supplying the evidence and justification to motivate the reader. Practical guidance on coding the methods is also provided, through simple-to-follow examples using Python. Topics and features: provides an accessible and applications-oriented approach, supported by working Python code for many of the methods; encourages both problem- and project-based learning through extensive examples, exercises, and projects drawn from practical applications; introduces the main concepts in modeling, python programming, number representation, and errors; explains the essential details of numerical calculus, linear, and nonlinear equations, including the multivariable Newton method; discusses interpolation and the numerical solution of differential equations, covering polynomial interpolation, splines, and the Euler, Runge–Kutta, and shooting methods; presents largely self-contained chapters, arranged in a logical order suitable for an introductory course on scientific computing. Undergraduate students embarking on a first course on numerical methods or scientific computing will find this textbook to be an invaluable guide to the field, and to the application of these methods across such varied disciplines as computer science, engineering, mathematics, economics, the physical sciences, and social science.
This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared. Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians. It can also be used as a textbook for a graduate-level course on Monte Carlo methods.