Download Free Guide To Nuclear Science Abstracts Book in PDF and EPUB Free Download. You can read online Guide To Nuclear Science Abstracts and write the review.

Annotation 'Nuclear Materials Science' takes students from understanding standard materials science and engineering and uses it as a base to work from in teaching the additional requirements of nuclear engineering science.
"One Physicist's Guide to Nuclear Weapons presents a truly global look at the history, use, and issues surrounding nuclear weapons from the perspective of physicist and writer Jeremy Bernstein. A first-hand witness to the development and science of nuclear weapons, he is in a unique position to highlight the ways in which nuclear weapons work with a writing style that is suitable for lay readers and scientists alike. Bernstein brings the reader on a journey from the Nevada nuclear-testing fields in the 1950s to the present day situations in Iran and North Korea, while delving into the physics and science behind the bomb. With an introduction by Sir Chris Llewellyn Smith, this book is a testament to the last 70 years of the nuclear age, affecting every human being on the planet."--Prové de l'editor.
Nuclear Safety provides the methods and data needed to evaluate and manage the safety of nuclear facilities and related processes using risk-based safety analysis, and provides readers with the techniques to assess the consequences of radioactive releases. The book covers relevant international and regional safety criteria (US, IAEA, EUR, PUN, URD, INI). The contents deal with each of the critical components of a nuclear plant, and provide an analysis of the risks arising from a variety of sources, including earthquakes, tornadoes, external impact and human factors. It also deals with the safety of underground nuclear testing and the handling of radioactive waste. - Covers all plant components and potential sources of risk including human, technical and natural factors. - Brings together information on nuclear safety for which the reader would previously have to consult many different and expensive sources. - Provides international design and safety criteria and an overview of regulatory regimes.
Radiation detection is key to experimental nuclear physics as well as underpinning a wide range of applications in nuclear decommissioning, homeland security and medical imaging. This book presents the state-of-the-art in radiation detection of light and heavy ions, beta particles, gamma rays and neutrons. The underpinning physics of different detector technologies is presented, and their performance is compared and contrasted. Detector technology likely to be encountered in contemporary international laboratories is also emphasized. There is a strong focus on experimental design and mapping detector technology to the needs of a particular measurement problem. This book will be invaluable to PhD students in experimental nuclear physics and nuclear technology, as well as undergraduate students encountering projects based on radiation detection for the first time. Key Features Provides clear, concise descriptions of key detection techniques Describes detector types with "telescopic depth", so readers can go as deep as they wish Covers real-world applications including short case studies in industry
This book introduces nuclear data to the newcomer and provides a basic introduction to the role of nuclear data as the foundation of nuclear structure study. The material presented assumes no prior knowledge of the content or language used in communicating details of nuclear data. The approach builds on basic concepts: from gross properties of nuclei, through properties of quantum excited states, to simple model perspectives. The role of spectroscopy is thoroughly integrated, across all types of measurements, with many illustrations, to show how properties of nuclei are deduced. The basic technical methods needed for the deduction of nuclear properties from raw data are presented in animated figures, video tutorials, and accompanying PowerPointa presentations. The level of presentation provides access for students and researchers in applied areas that use nuclear data, e.g., medical applications and nuclear security. Overall, the book focuses on pedagogy and accessibility to the data aspect of nuclear physics. Part of IOP Series in Nuclear Spectroscopy and Nuclear Structure.
Physics of Nuclear Reactors presents a comprehensive analysis of nuclear reactor physics. Editors P. Mohanakrishnan, Om Pal Singh, and Kannan Umasankari and a team of expert contributors combine their knowledge to guide the reader through a toolkit of methods for solving transport equations, understanding the physics of reactor design principles, and developing reactor safety strategies. The inclusion of experimental and operational reactor physics makes this a unique reference for those working and researching nuclear power and the fuel cycle in existing power generation sites and experimental facilities. The book also includes radiation physics, shielding techniques and an analysis of shield design, neutron monitoring and core operations. Those involved in the development and operation of nuclear reactors and the fuel cycle will gain a thorough understanding of all elements of nuclear reactor physics, thus enabling them to apply the analysis and solution methods provided to their own work and research. This book looks to future reactors in development and analyzes their status and challenges before providing possible worked-through solutions. Cover image: Kaiga Atomic Power Station Units 1 - 4, Karnataka, India. In 2018, Unit 1 of the Kaiga Station surpassed the world record of continuous operation, at 962 days. Image courtesy of DAE, India. Includes methods for solving neutron transport problems, nuclear cross-section data and solutions of transport theory Dedicates a chapter to reactor safety that covers mitigation, probabilistic safety assessment and uncertainty analysis Covers experimental and operational physics with details on noise analysis and failed fuel detection
This book provides an introductory course on Nuclear and Particle physics for undergraduate and early-graduate students, which the author has taught for several years at the University of Zurich. It contains fundamentals on both nuclear physics and particle physics. Emphasis is given to the discovery and history of developments in the field, and is experimentally/phenomenologically oriented. It contains detailed derivations of formulae such as 2- 3 body phase space, the Weinberg-Salam model, and neutrino scattering. Originally published in German as 'Kern- und Teilchenphysik', several sections have been added to this new English version to cover very modern topics, including updates on neutrinos, the Higgs boson, the top quark and bottom quark physics. - Prové de l'editor.