Download Free Guidance Framework For Testing The Sterile Insect Technique Sit As A Vector Control Tool Against Aedes Borne Diseases Book in PDF and EPUB Free Download. You can read online Guidance Framework For Testing The Sterile Insect Technique Sit As A Vector Control Tool Against Aedes Borne Diseases and write the review.

Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their target species, including non-target species, air, water and soil. The extensive reliance on insecticide use reduces biodiversity, contributes to pollinator decline, destroys habitat, and threatens endangered species. This book offers a more effective application of the Integrated Pest Management (IPM) approach, on an area-wide (AW) or population-wide (AW-IPM) basis, which aims at the management of the total population of a pest, involving a coordinated effort over often larger areas. For major livestock pests, vectors of human diseases and pests of high-value crops with low pest tolerance, there are compelling economic reasons for participating in AW-IPM. This new textbook attempts to address various fundamental components of AW-IPM, e.g. the importance of relevant problem-solving research, the need for planning and essential baseline data collection, the significance of integrating adequate tools for appropriate control strategies, and the value of pilot trials, etc. With chapters authored by 184 experts from more than 31 countries, the book includes many technical advances in the areas of genetics, molecular biology, microbiology, resistance management, and social sciences that facilitate the planning and implementing of area-wide strategies. The book is essential reading for the academic and applied research community as well as national and regional government plant and human/animal health authorities with responsibility for protecting plant and human/animal health.
The sterile insect technique (SIT) is an environment-friendly method of pest control that integrates well into area-wide integrated pest management (AW-IPM) programmes. This book takes a generic, thematic, comprehensive, and global approach in describing the principles and practice of the SIT. The strengths and weaknesses, and successes and failures, of the SIT are evaluated openly and fairly from a scientific perspective. The SIT is applicable to some major pests of plant-, animal-, and human-health importance, and criteria are provided to guide in the selection of pests appropriate for the SIT. In the second edition, all aspects of the SIT have been updated and the content considerably expanded. A great variety of subjects is covered, from the history of the SIT to improved prospects for its future application. The major chapters discuss the principles and technical components of applying sterile insects. The four main strategic options in using the SIT — suppression, containment, prevention, and eradication — with examples of each option are described in detail. Other chapters deal with supportive technologies, economic, environmental, and management considerations, and the socio-economic impact of AW-IPM programmes that integrate the SIT. In addition, this second edition includes six new chapters covering the latest developments in the technology: managing pathogens in insect mass-rearing, using symbionts and modern molecular technologies in support of the SIT, applying post-factory nutritional, hormonal, and semiochemical treatments, applying the SIT to eradicate outbreaks of invasive pests, and using the SIT against mosquito vectors of disease. This book will be useful reading for students in animal-, human-, and plant-health courses. The in-depth reviews of all aspects of the SIT and its integration into AW-IPM programmes, complete with extensive lists of scientific references, will be of great value to researchers, teachers, animal-, human-, and plant-health practitioners, and policy makers.
Insects are by far the most diverse and abundant animal group with respect to the number of species globally, in ecological habitats and in biomass. The ecological and evolutionary success of insects depends in part on their countless relationships with beneficial microorganisms, which are known to influence all aspects of their physiology, ecology, and evolution. These symbiotic associations are known to: (a) enhance nutrient-poor diets, (b) aid digestion of recalcitrant food components, (c) protect from predators, parasites, and pathogens, (d) contribute to inter- and intraspecific communication, (e) affect efficiency as disease vectors and (f) govern mating and reproductive systems. Characterization, exploitation, and management of the insect-bacterial symbiotic associations can contribute significantly to the control of agricultural pests and disease vectors. Insects that depend exclusively on nutritionally restricted diets such as plant sap, vertebrate blood, and woody material, commonly possess obligate mutualistic endosymbionts involved in the provision of essential nutrients or in the degradation of food materials. These intracellular mutualists commonly have the following biological features: (a) they localize inside bacteriocytes, (b) are essential for fitness, (c) are maternally transmitted, and (d) display strict host-symbiont co-evolutionary patterns. In addition to obligate endosymbionts, many insects harbor bacteria that are not essential for their survival or fecundity and are typically maintained with a patchy distribution in host populations. Such symbionts can induce reproductive phenotypes in insect hosts, including male-killing, feminization, parthenogenesis or cytoplasmic incompatibility. Because these bacteria manipulate their host’s reproductive biology, they also likely accelerate host processes. As for essentially all animals, microbial communities are particularly prominent in the digestive tract, where they may be key mediators of the varied lifestyles of insect hosts. The contribution of microorganisms, particularly gut microorganisms, to insect function is highly relevant from several perspectives, linking to applications in medicine, agriculture, and ecology. Gut-associated microorganisms can include protists, fungi, archaea, and bacteria, but it is generally accepted that bacterial species dominate the microbial community in the guts of most insects. Gut-associated bacteria can influence: (a) vectoring efficiency, (b) developmental time, (c) decomposition of plant biomass and carbon cycle, (d) nitrogen fixation and nitrogen cycle, (e) mating incompatibilities, and (f) detoxification of pesticides leading to the acquisition of insecticide resistance.
This book comprehensively covers the latest development in developing and deploying the genetically modified vectors, particularly Anopheles and Aedes mosquitoes responsible for transmitting malaria parasites and dengue viruses, the most deadly and/or debilitating among all the vector-borne diseases. It is considered timely and commensurate to bring about a book dealing with the various ecological, biological and social as well as regulatory aspects for the deployment of genetically modified vectors in special context with the biosafety of humans, his associates, and the environment. Written by an array of specialists and experts in various subjects of genetically modified organisms, this book centrally addresses the (i) basic principles of the genetic manipulation of vectors and they are potential impact on human and the environment, (ii) ecological, biological, ethical, legal and social implications of the use of genetically modified vectors, (iii) identification of potential hazards; assessment and management of risks for human and environment; risk/benefit analysis, (iv) principles and practices for the assessment and management of biosecurity and biosafety in laboratories (and in the field), (v) guiding principles for creation and management of institutional or national biosafety review boards and ethics review committees, and (vi) development and application of a biosafety regulatory framework and its related legal principles at national levels for securing the development and use of vector control methods based on genetic modification strategies. This publication will be useful to researchers, scientists, and professionals engaged in academic and research institutions, government or non-government, as well as students in universities and medical colleges.
This open access book identifies and discusses biodiversity’s contribution to physical, mental and spiritual health and wellbeing. Furthermore, the book identifies the implications of this relationship for nature conservation, public health, landscape architecture and urban planning – and considers the opportunities of nature-based solutions for climate change adaptation. This transdisciplinary book will attract a wide audience interested in biodiversity, ecology, resource management, public health, psychology, urban planning, and landscape architecture. The emphasis is on multiple human health benefits from biodiversity - in particular with respect to the increasing challenge of climate change. This makes the book unique to other books that focus either on biodiversity and physical health or natural environments and mental wellbeing. The book is written as a definitive ‘go-to’ book for those who are new to the field of biodiversity and health.
The report shows progress made on various indicators related to three overarching categories: technical expected results, application of organizational core values and managerial performance. Ultimately, TDR’s outputs and outcomes contribute to health impact, measured through the achievement of Sustainable Development Goals (SDGs) and the World Health Organization’s (WHO) Thirteenth General Programme of Work (GPW13) triple billion targets. Given the adoption of the Sustainable Development Goals by the global community in 2016, TDR developed its 2018-2023 strategy to showcase the Programme’s unique contribution, through research, capacity strengthening and global engagement, to improved health, quality education, enhanced partnerships and other relevant SDG targets guiding international development work over the next 15 years. The Performance Framework (including a revised set of indicators), which is aligned with TDR’s 2018-2023 strategy, the GPW13 strategic objectives and SDG targets, has been in place since 2018.