Download Free Growth Control During Cell Aging Book in PDF and EPUB Free Download. You can read online Growth Control During Cell Aging and write the review.

The purpose of this book is to provide information on senescent cells and why they are prevented from multiplying via cell division. It includes main sections on the nature of Go/1 transition, factors promoting the cell cycle traverse and avoiding the Go/1 arrest, and negative factors arresting the cell cycle traverse and promoting the stay in the Go/1 stage. Filled with illustrations and explanations, it collectively presents the mechanisms that control the cellular aging process. This reference is a must for anyone with special interests in the biological community, and specifically the field of gerontology.
Recent studies have indicated that epigenetic processes may play a major role in both cellular and organismal aging. These epigenetic processes include not only DNA methylation and histone modifications, but also extend to many other epigenetic mediators such as the polycomb group proteins, chromosomal position effects, and noncoding RNA. The topics of this book range from fundamental changes in DNA methylation in aging to the most recent research on intervention into epigenetic modifications to modulate the aging process. The major topics of epigenetics and aging covered in this book are: 1) DNA methylation and histone modifications in aging; 2) Other epigenetic processes and aging; 3) Impact of epigenetics on aging; 4) Epigenetics of age-related diseases; 5) Epigenetic interventions and aging: and 6) Future directions in epigenetic aging research. The most studied of epigenetic processes, DNA methylation, has been associated with cellular aging and aging of organisms for many years. It is now apparent that both global and gene-specific alterations occur not only in DNA methylation during aging, but also in several histone alterations. Many epigenetic alterations can have an impact on aging processes such as stem cell aging, control of telomerase, modifications of telomeres, and epigenetic drift can impact the aging process as evident in the recent studies of aging monozygotic twins. Numerous age-related diseases are affected by epigenetic mechanisms. For example, recent studies have shown that DNA methylation is altered in Alzheimer’s disease and autoimmunity. Other prevalent diseases that have been associated with age-related epigenetic changes include cancer and diabetes. Paternal age and epigenetic changes appear to have an effect on schizophrenia and epigenetic silencing has been associated with several of the progeroid syndromes of premature aging. Moreover, the impact of dietary or drug intervention into epigenetic processes as they affect normal aging or age-related diseases is becoming increasingly feasible.
The Biology of Senescence
Stem Cells and Aging covers what is known about the effect of time and age on the basic units of life, which are the corresponding tissue-specific or adult stem cells. Even though the concept of stem cells was introduced nearly a century ago by Alexander Maximow, modern stem-cell research began in 1963 when James Till, Ernest McCullough and Lou Siminovitch established assays to detect hematopoietic stem cells. In fact, given the importance of the aging-associated diseases, scientists have developed a keen interest in understanding the aging process as they attempt to define the role of dysfunctional stem cells in the aging process. With an aging population worldwide, understanding these age-related stem cell changes at a basic biology level and at the level of their influences for regenerative medicine is of interest and importance. There is increasing evidence that the aging process can have much adverse effects on stem cells. In the modern era, one of the emerging fields in treating human diseases is stem cell research, as stem cells have the remarkable potential to treat a wide range of diseases. Nevertheless, understanding the molecular mechanism involved in aging and deterioration of stem cell function is crucial in developing effective new therapies for aging. - Serves as an ideal reference to guide investigators toward valuable answers to the problems of our aging population - Addresses the effect of time and age on human stem cells - Includes chapters from contributors exploring the biology of stem cell aging around the globe
This volume covers the major threads in the molecular genetics of aging, including genes that regulate aging, causes of aging, evolutionary theories of aging, and the relationship between diet and aging. Among specific topics covered are calorie restriction, mitochondria, sirtuins, telomeres, stem cells, and cancer.
This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.
Holland-Frei Cancer Medicine, Ninth Edition, offers a balanced view of the most current knowledge of cancer science and clinical oncology practice. This all-new edition is the consummate reference source for medical oncologists, radiation oncologists, internists, surgical oncologists, and others who treat cancer patients. A translational perspective throughout, integrating cancer biology with cancer management providing an in depth understanding of the disease An emphasis on multidisciplinary, research-driven patient care to improve outcomes and optimal use of all appropriate therapies Cutting-edge coverage of personalized cancer care, including molecular diagnostics and therapeutics Concise, readable, clinically relevant text with algorithms, guidelines and insight into the use of both conventional and novel drugs Includes free access to the Wiley Digital Edition providing search across the book, the full reference list with web links, illustrations and photographs, and post-publication updates
Aging is a major risk factor for chronic diseases, which in turn can provide information about the aging of a biological system. This publication serves as an introduction to systems biology and its application to biological aging. Key pathways and processes that impinge on aging are reviewed, and how they contribute to health and disease during aging is discussed. The evolution of this situation is analyzed, and the consequences for the study of genetic effects on aging are presented. Epigenetic programming of aging, as a continuation of development, creates an interface between the genome and the environment. New research into the gut microbiome describes how this interface may operate in practice with marked consequences for a variety of disorders. This analysis is bolstered by a view of the aging organism as a whole, with conclusions about the mechanisms underlying resilience of the organism to change, and is expanded with a discussion of circadian rhythms in aging. Finally, the book presents an outlook for the development of interventions to delay or to reverse the features of aging. The publication is recommended to students, researchers as well as professionals dealing with public health and public policy related to an aging society.
This new volume in the Subcellular Biochemistry series will focus on the biochemistry and cellular biology of aging processes in human cells. The chapters will be written by experts in their respective fields and will focus on a number of the current key areas of research in subcellular aging research. Main topics for discussion are mitochondrial aging, protein homeostasis and aging and the genetic processes that are involved in aging. There will also be chapters that are dedicated to the study of the roles of a variety of vitamins and minerals on aging and a number of other external factors (microbiological, ROS, inflammation, nutrition). This book will provide the reader with a state of the art overview of the subcellular aging field. This book will be published in cooperation with a second volume that will discuss the translation of the cell biology of aging to a more clinical setting and it is hoped that the combination of these two volumes will bring a deeper understanding of the links between the cell and the body during aging.